PRION DISEASE

A review of experimental drug treatments
Normal prion protein: (PrP-sen or PrP^C)

- Sensitive to proteases
- Soluble in detergents
- In diverse tissues, cell types
- Apparent cellular roles:
 - Adhesion
 - Differentiation
 - Neuritogenesis
 - Synaptogenesis
 - Cell survival, apoptosis
 - Resistance to oxidative stress
 - Metal binding
 - Hemin binding

Essential for TSE diseases
TSE-associated prion protein:
(PrP-res, PrPSc, PrPCJD, PrPBSE, PrPCWD, etc.)

- Resistant to proteases
- Form insoluble aggregates, polymers
 - e.g. amyloid fibrils, plaques
- Nervous tissue, lymphoid tissue
- Co-localized with neuropathology
- Associated with infectivity
- Covalent structure indistinguishable from normal PrP

Main difference appears to be conformational

PrPSc = red

Valerie Sim, unpublished data

B. Chesebro et al,
Science 308:1435 (2005)
Therapeutic targets – where to begin?

- **PrP-res**
 - Directly block conversion
 - Binding of PrP\(^C\) and PrP-res
 - Redistribute or sequester PrP\(^C\) to a location incompatible with conversion
 - Suppress PrP\(^C\) expression
 - Indirectly block conversion
 - Interfere with accessory molecules or pathways required for conversion and/or pathology
 - Enhance clearance

- **Neuroprotection**

- **Combination therapy**
Therapeutic targets – when to begin?

Before exposure: prophylaxis / decontamination
- Familial CJD, GSS, FFI
- Blood transmission of vCJD, surgical instruments
- Reduce spread of BSE, CWD, scrapie

Neuroinvasion (symptomatic)
- Sporadic / genetic diseases
- Requires bypassing blood-brain barrier
- Combined approach?
 - PrP-res inhibition, clearance
 - Block neurotoxicity or promote recovery

Peripheral replication
- Orally-acquired diseases
 - vCJD, BSE, CWD, scrapie
- Immunotherapies, chemotherapies
- Requires early diagnosis
 - PMCA-based methods (including rPrP-PMCA, QuIC)
Therapeutic targets – how to begin?

• **In vivo**
 – Slow, costly, impractical for screening
 – Dosage and route considerations (intraventricular)

• **In vitro**
 – Infected cell culture models
 • Allow high-throughput screening
 – scrapie N2a (mouse) [Kocisko et al, J Virol 2003]
 – scrapie fibroblasts (mouse) [Vorberg et al, JID 2004]
 – scrapie SN56 (mouse) [Baron et al, J Virol 2006]
 – scrapie Rov9 (sheep) [Kocisko et al, Neurosci Lett 2005]
 – MDB^{CWD} (deer) [Raymond et al, J Virol 2006]
 • Allow investigation of underlying mechanisms
 – Non-cell based models
 • Competitive binding of PrP^C and PrP-res
 • Prevention of amyloid fibril formation
 • Computer-based predictions of PrP binding partners
Results so far

- Thousands of compounds tested in vitro
- Hundreds of new inhibitors identified
- Some protect rodents against peripheral scrapie inoculation
- Some prolong the lives of rodents with established CNS infections
- Two inhibitors (at least) are being tested in CJD patients
 - Pentosan polysulphate
 - Quinacrine (PRION1 trial)
Targetting PrP conversion

- **Binding PrP^C and / or PrP-res**
 - Polyanions, sulphated glycans
 - Pentosan polysulphate, phosphorothioated oligonucleotides
 - Sulphonated dyes (may mimic polyanions by stacking)
 - Congo red, suramin, curcumin
 - Cyclic tetrapyrroles
 - Porphyrins, phthalocyanines, hemin
 - Lysosomotropic factors
 - Quinacrine
 - Tetracyclics
 - Tetracycline, doxycycline
PrP-res inhibitors: a common mechanism of action?

Small molecules: porphyrins, phthalocyanines, sulphonated dyes

Large polymers: sulphated glycans, phosphorothioate-oligonucleotides (PS-ONs)

- Bind PrP\(^C\) (but not necessarily PrP-res)
- Compete for the same, or overlapping, binding sites in the amino-terminal half of the molecule
- Induce clustering of PrP\(^C\) and internalization (?) from cell surface
 (Harris, Schätzl, Winklhofer, Tatzelt, Caughey labs)

Phthalocyanine Tetrasulphonate (PcS\(_4\)) Iota-carrageenan (sulphated glycan)

His globular domain (residues ~126-231) Trp octapeptide repeats

sulphated glycans or PS-ONs

Non-ionic core

sulphonated (-) porphyrins, phthalocyanines or dyes

flexible domain (residues 23-~125) Lys105

PrP C

Model of inhibitor interactions with PrP C

proteoglycan
GAG chains
PrP
PrP Sc
endosomes
lysosomes
Inhibition
No inhibition
inhibition
lysosomes
degradation
A role for PrP^C in heme binding, sensing, transport, signal transduction, detoxification?

- 10-20 hemins per PrP via flexible N-terminal domain
- PrP^C clustering on cell surface
- PrP^C internalization
- PrP^C degradation
- altered redox activity of hemin
- inhibition of PrP-res formation

Hemin interactions with PrP^C

Kil Sun Lee et al., JBC. 2007
Phosphorothioate oligonucleotides (PS-ONs) as PrP^{Sc} inhibitors

- CpG PS-ONs (20-mers) have prophylactic anti-scrapie activity attributed to stimulation of innate immunity through TLR-9 receptor (Sethi et al. Lancet. 2002)
- Repeated CpG-PS-ON treatments are highly destructive to lymphoid organs (Heikenwalder et al. Nature Med. 2004)

What about non-CpG PS-ONs with little or no immunostimulatory activity?

Degenerate, randomized mixtures (Randomers) or uniform homopolymers
Prophylactic anti-scrapie activity of degenerate PS-ON 40-mers in Tg7 mice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Survival time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>subcutaneous mock</td>
<td>87 ± 6</td>
</tr>
<tr>
<td>subcutaneous PS-ON</td>
<td>218 ± 33</td>
</tr>
<tr>
<td>i.p. mock</td>
<td>80 ± 8</td>
</tr>
<tr>
<td>i.p. PS-ON</td>
<td>329 ± 8</td>
</tr>
</tbody>
</table>

Days post infection

-7 0 28

i.p. infection (~10^4 LD_{50})

s.c. or i.p. drug doses

Phosphorothioate-oligonucleotides (non-CpG)

• Potently inhibit PrP-res in scrapie-infected cell cultures
 • size dependent (best at ≥25 bases)
 • independent of base composition
 • dependent on phosphorothioation

• Bind to PrP\(^\text{C}\) with nM affinity

• Bind to PrP\(^\text{C}\) on cell surface, causing clustering and internalization.

• Quadruple \textit{in vivo} survival times after i.p. scrapie challenge

• Increase survival times with one-time mixing with i.c. scrapie brain inoculum, as if scrapie was diluted >1000 X

• Neutralizes blood-borne hamster scrapie

• Lower anticoagulation activity than PPS

A new class of anti-TSE compound with no apparent CpG-ON-like toxicity

Porphyrrins: Sulphonated (TSP) & Anilinium (TAP)

• **Prophylactic activity**
 FeTAP quadruples survival time after i.p. scrapie challenge (~10^4 LD₅₀)

• **Decontaminating activity**
 FeTAP & NiTAP increase survival time ~40% when mixed with i.c scrapie inocula (~10^6 LD₅₀), as if inocula were diluted 1,000-10,000-fold.

• **Effects against established brain infections**
 FeTSP increases survival times by ~50% when treatment is begun 2 wks after i.c. scrapie inoculation (~10^6 LD₅₀), if drug is injected directly into the brain.

 * Similar to effects of pentosan polysulphate infusions into the brain (Doh-Ura et al.)

Targetting PrP conversion

- **Redistribution or sequestration of PrP**
 - Simvastatin (cholesterol depletion?)
 - crosses blood-brain barrier
 - high dose delays disease when given 100 days after i.c. inoc. ([Mok et al. Biochem Biophys Res Commun. 2006](#))
 - may be secondary to anti-inflammatory effects

- Polyene antibiotics (alter raft domains)
 - Amphotericin B, MS-8209
 - some effect in late treatment of i.c. inoc. mice ([Demaimay et al. J Gen Virol. 1994; Demaimay JV. 1997](#))
Targetting PrP conversion

- **Suppress PrP^C expression**
 - May reverse neuropathology and neurological signs
 (Mallucci et al. Science. 2003; Mallucci et al. Neuron. 2007)
 - Use siRNA, lentivirus vector delivery
Other approaches

- **Target accessory molecules and pathways**
 - Laminin receptor and precursor
 - some effect on peripheral phase (Zuber *et al.* Mol Immunol. 2008)
 - Tyrosine kinase inhibitors (Imatinib mesylate)
 - delayed neuroinvasion (Yun *et al.* J Neurovirol. 2007)
 - Follicular dendritic cells
 - cleared spleen PrP^res^ and prevented neuroinvasion

- **Enhance PrP-res clearance?**
 - Cationic polyamines (phosphorus dendrimers, gen 4.0)
 - reduce spleen PrP^Sc^ in i.p. inoc. mice (Solassol *et al.* J Gen Virol. 2004)
 - Antibodies...
Antibodies

- **Active immunization**
 - Self-tolerance to PrP\(^c\) makes generation of high titres difficult
 - Specific PrP\(^\text{res}\) antibodies eg. Tyr-Tyr-Arg ([Paramithiotis et al. Nat Med. 2003](#))
 - Must avoid widespread cellular lysis
 - Alzheimer Abeta vaccine caused meningoencephalitis ([Orgogozo et al. Neurology. 2003](#))
 - Avoid T-cell responses by using a PrP sequence inserted into a bovine papillomavirus 1 protein carrier ([Handisurya et al. 2007](#))
Antibodies

- **Passive immunization**
 - Immediate post-exposure or early treatment
 - can prolong incubation times in i.p. inoc. mice
 - Blood-brain barrier
 - may limit effectiveness after neuroinvasion
- **Side effects**
 - Hippocampal injection of high concentrations of PrP antibodies (against sequence 95-105) led to degeneration of hippocampal and cerebellar neurons (Solforosi et al. Science. 2004)
 - Fab fragments may avoid degeneration secondary to cross-linking of PrPc
• **Neuroprotection**

 – Analgesics (flupirtine maleate)
 • human trial, only mild cognitive benefit *(Otto et al. Neurology. 2004)*

 – Cannabis (cannabinol)
 • early treatment benefit in i.p. inoculated mice *(Dirikoc et al. J Neurosci. 2007)*

 – Anti-oxidants?

 – Bilobalide (derived from Gingko biloba)
 • not effective in i.c. inoculated mice *(Sim, Morrey, Caughey, unpublished data)*
Combination Therapy?
Enhanced anti-scrapie effect using **combination** treatment:

Intracerebral injection of pentosan polysulphate (PPS) and a porphyrin (FeTSP) beginning 2-4 wks after intracerebral scrapie inoculation of Tg7 mice

i.c. infection (~10^6 LD₅₀)

Kocisko *et al.* Antimicrob Agents & Chemother. 2006
Drug combinations with more than additive effects

Demonstrated *in vivo* effects:

- Pentosan polysulphate and FeTSP (effect decreases late in incubation period)

In vitro data:

- Quinacrine and simvastatin
 (Klingenstein et al. J Neurochem. 2006)

- Quinacrine and desipramine (new drug created: quipramine)
 (Klingenstein et al. J Neurochem. 2006)

- Quinacrine and rPrP-Q218K
 (Kishida et al. Amyloid. 2004)
Inhibition of PrP$_{Sc}$ accumulation is important, but may not be sufficient in the clinical phase.

Combining conversion inhibitors with neuroprotective agents or those that enhance PrP$_{Sc}$ clearance may be more successful...
Coworkers: Inhibitor studies

Rocky Mountain Laboratories
Byron Caughey
David Kocisko
Kil Sun Lee
Rick Race
Winslow Caughey
Lynne Raymond
Emily Olsen
Lauren Kett
Brianna Schoen
Lisa Johnson
Lara Taubner
Roger Moore
Suzette Priola

Utah State University
John Morrey
Grant Roper

REPLICor, Inc.
Andrew Vaillant
Jean-Marc Juteau
Thanks:

Alberta Heritage Foundation for Medical Research

Intramural Research Program of the National Institute for Allergy and Infectious Diseases (NIAID) and the Department of Defense
I hope you and your team will eventually find a way to prevent, cure, and eradicate this horribly cruel disease that leaves a family to watch their loved one suffer until death with hands tied.

I have never wished for cancer before in my life.

At least there is hope.

- Daughter of a patient diagnosed with CJD