Targeting the unfolded protein response prevents prion neurodegeneration in mice

Julie Moreno PhD
MRC Toxicology Unit
Outline

• Background

• Temporal sequence of events

• Prevention of UPR activation
 – genetically
 – Pharmacologically
Neurodegenerative diseases

- Alzheimer’s
- Parkinson’s
- Huntington’s
- ALS
- Prion

WHO: by 2040 second commonest cause of death in developed world
Common themes in neurodegeneration

- aggregation of misfolded proteins
- gliosis
- early synaptic dysfunction and loss
- irreversible neuronal loss

Are there common pathways driving this?
How do we study neurodegenerative disease in mice?

prion disease
Prion neuropathology

Spongiosis

PrP amyloid deposits ‘PrPSc’

Astrogliosis

Neuronal loss

Hippocampus CA1

GFAP

GSK2606414 Vehicle GSK2606414

ca
e
d
control
b
hf
0
200
400
600

PrP amyloid deposits ‘PrPSc’
PrPSc is derived from endogenous PrPC
Removal or PrPC is neuroprotective

- Adult onset removal of PrP is neuroprotective in prion diseased mice (Mallucci et al., 2003 and 2007)

- Injection of shRNA PrP into the hippocampus allowed for neuroprotection and prolonged survival (White et al., 2009)

Critical time-point of intervention?
What are the processes involved?

- Basic descriptive mapping of changes in
 - Synapse number
 - Synaptic function
 - Synaptic proteins
 - Neuronal loss
 - Behavior

[Graph showing prion infection and timeline from 0 to 12 w.p.i.]
Critical point: reduction in synaptic proteins

Moreno et al., Nature (2012)
Is this due to reduction in global protein synthesis?
Temporal sequence of prion disease

prion infection

0
7
8
9
10
11
12 w.p.i.

synapse loss
memory loss
protein synthesis and burrowing
neuronal loss
confirmatory clinical signs death

Synaptic transmission
What is causing this loss protein synthesis?

- Translational control pathways

Unfolded protein response?
Unfolded protein response (UPR)

- Maintains protein folding homeostasis within the ER
- Allowing for proper protein function
- Cellular stress causes activation
 - misfolded proteins
Unfolded/misfolded proteins

ATF6
Vesicular transport to golgi and cleavage
nATF6
Transcription of UPR target genes

Bip

PERK

P

eIF2α
REDUCED TRANSLATION

ATF4

CHOP
Apooptotic pathway

IRE1
mRNA processing

sXBP1
Chaperones, lipid synthesis and ERAD proteins
Unfolded protein response (UPR)
Rising levels of misfolded PrP induce elf2α-P
Unfolded protein response (UPR)

Unfolded/misfolded proteins

- Bip

- PERK

- eIF2α

- GADD34

LV-shPrP

LV-GADD34

- salubrinal

Reduced translation

Synaptic failure

Neurodegeneration
Prion Virus

Control Prion only Prion + Salubrinal Prion + LV-control Prion + LV-shPrP Prion + LV-GADD34

Test at 9 wpi

Prion

Virus

5 weeks incubation
PrP knockdown and GADD34 over-expression reduce eIF2α-P levels
Reducing eIF2α-P restores global translation rates.
Reducing eIF2α-P restores synaptic protein levels
Reducing eIF2α-P restores synaptic transmission and behavioural deficits
Reducing eIF2α-P rescues synapse number
Reducing eIF2α-P is neuroprotective
Focal reduction of eIF2α-P levels increases survival
Outline

• Background

• Temporal sequence of events

• Prevention of UPR activation
 – genetically
 – Pharmacologically
Unfolded/misfolded proteins

Bip

PERK

GADD34

eIF2α

Reduced translation

Loss of critical proteins

Neurodegeneration
GSK2606414 penetrates the blood brain barrier

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>Plasma mean (ng/ml ± SD)</th>
<th>Brain mean (ng/g) ± SD</th>
<th>Mean ratio brain: plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>NQ</td>
<td>NQ</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1227 ± 696</td>
<td>557 ± 292</td>
<td>0.22</td>
</tr>
<tr>
<td>50</td>
<td>13912 ± 5914</td>
<td>7507 ± 2528</td>
<td>0.56</td>
</tr>
<tr>
<td>150</td>
<td>16002 ± 453</td>
<td>9539 ± 1516</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Moreno et al., 2013 Sci. Trans. Med.
Experimental set-up

Prion infection

0

GSK2606414

7

GSK2606414

8

protein synthesis and burrowing

9

10

neuronal loss

11

12 w.p.i.

confirmatory clinical signs death

synapse loss

memory loss

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

*
Behavioral deficits rescued by GSK2606414
Clinical signs of disease exacerbated by GSK2606414
Neuronal loss is prevented

<table>
<thead>
<tr>
<th>Hippocampus</th>
<th>Uninfected control</th>
<th>Prion infection: 12 w.p.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehicle</td>
<td>GSK2606414</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overall brain protection

<table>
<thead>
<tr>
<th></th>
<th>Uninfected control</th>
<th>Prion infection: 12 w.p.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehicle</td>
<td>GSK2606414</td>
</tr>
<tr>
<td>Cortex</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Thalamus</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>Brainstem</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>m</td>
<td>n</td>
</tr>
</tbody>
</table>
PERK / eIF2α-P is inhibited
GSK2606414 restores translational failure
GSK2606414 restores synaptic protein levels
Unfolded/misfolded proteins

ATF6

Vesicular transport to golgi and cleavage

nATF6

Transcription of UPR target genes

PERK

eIF2α

REDUCED TRANSLATION

ATF4

CHOP

Apoptotic pathway

sXBP1

Chaperones, lipid synthesis and ERAD proteins

IRE1

mRNA processing
Other branches of the UPR
Levels of PrPC and PrPSc are unchanged.
• Toxicity of compound?
GSK2606414 treated mice lose >20% body weight
Blood glucose levels rise and pancreas weights decrease with treatment.
Pancreas morphology following 5 weeks of GSK2606414 treatment

- 5 mg/kg
- 10 mg/kg
- 50 mg/kg
Toxic side effects

- Can we reduce toxicity?
 - Dose response studies

- Supplement for loss of pancreas

- Peripheral activation of PERK

- Target other parts of the pathway
Possible new targets for treatment irrespective of specific disease proteins

- Increased eIF2\(\alpha\)-P and PERK-P in AD, PD, ALS and prion patients brains (Hoozemans et al., 2007, 2009; Atkin et al., 2008)

- eIF2\(\alpha\)-P in APOE4 mice (Segev et al., 2013)

- Increasing levels of tau and PERK-P (Abisambra et al., 2013)
Conclusions

• Targeting the UPR genetically and pharmacologically prevents prion neurodegeneration
 – Independent of PrP

• Better compounds need to be identified to target pathway

• Manipulation of this generic cellular pathway may be possible in other mouse models of neurodegeneration
Acknowledgements

Mallucci Group:
Giovanna Mallucci
Helois Radford
Diego Peretti
Nick Verity
Maria Guerra-Martin
Mark Halliday
Jason Morgan
Gurdeep Kooner
Colin Molloy

MRC Toxicology Unit:
David Dinsdale
Jenny Edwards
Joern Steinert
Martin Bushell
Anne Willis
David Read
DBS staff

University of Nottingham:
Catherine Ortori
David Barrett
Peter Fischer

GlaxoSmithKline
Jeffery Axten