Development of an ante-mortem & pre-symptomatic diagnostic test for human prion diseases using RT-QuIC & eQuIC assays

Rocky Mountain Labs
National Institute for Allergy & Infectious Diseases

12th Annual CJD Foundation Family Conference

Christina D. Orrú, Ph.D.
Human prion diseases

- **INFECTIOUS:**
 - Kuru (cannibalism)
 - iatrogenic CJD (e.g. contaminated surgical instruments, prion-infected growth hormone injections)
 - variant CJD (from BSE-infected cattle)

- **FAMILIAL:**
 - prion protein mutations
 - familial CJD
 - Gerstmann-Sträussler-Scheinker syndrome (GSS)
 - fatal familial insomnia (FFI)

- **SPORADIC:**
 - no known prion protein mutations
 - probably spontaneous disease
 - 1 case per 2 million people annually worldwide
 - accounts for 95% of human TSE
Diagnosis of Sporadic Creutzfeldt-Jakob Disease

➢ Diagnostic tools:
 - EEG: periodic sharp waves complex
 - CSF: Positive 14-3-3 protein
 - MRI: Hyperintensity in the basal ganglia and cortical regions
 - PRNP: codon 129 polymorphism

➢ Lack of an Intravital Diagnostic test

➢ Definite Diagnosis is based on neuropathology & detection of pathological PrP in the brain
Plate-based fluorescence detection of prion-seeded PrP amyloid (Real-time Quaking-Induced Conversion: RT-QuIC)

- Extremely sensitive: up to 1 billion-fold amplification!
- Quantitative & Disease specific
- Much faster & cheaper than similarly sensitive tests

Wilham, Orrú, Bessen et al, PLoS Pathogens, 2010
RT-QuIC analysis of human cerebrospinal fluid (CSF)

- 85-89% overall sensitivity
- 99-100% specificity
 • much better than other CSF markers
Olfactory mucosa brushing procedure

Orru, Bongianni, Caughey & Zanusso et al., NEJM 2014
RT-QuIC analysis of olfactory mucosa samples from CJD & control patients
RT-QuIC of olfactory mucosa from CJD & control patients: Brush vs. Swab
RT-QuIC of olfactory mucosa from CJD & control patients: Brush vs. Swab

<table>
<thead>
<tr>
<th></th>
<th>Brush 1</th>
<th>Swab 1</th>
<th>Swab 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Patient 2</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Patient 3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Patient 4</td>
<td>+</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>Patient 5</td>
<td>+</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>Patient 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patient 7</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Patient 8</td>
<td>+</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>Patient 9</td>
<td>+</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>Patient 10</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Patient 11</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Patient 12</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Patient 13</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patient 14</td>
<td>+</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>Patient 15</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Patient 16</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Patient 17</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Patient 18</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

![Graph showing % Maximum ThT Fluorescence for different patients using Brush 1, Swab 1, and Swab 2](image-url)
RT-QuIC of olfactory mucosa from CJD & control patients: Brush vs. Swab
Higher temperatures allow faster identification of sCJD samples.
In vivo analysis of Olfactory Mucosa & Cerebro Spinal Fluid from sCJD patients and negative controls: preliminary update

Raymond G. & Orru C. & Caughey C., manuscript in preparation 2014
Faster & more sensitive RT-QuIC analysis of sCJD CSF

42°C

55°C

Average ThT Fluorescence

Time (h)
RT-QuIC detection of Genetic Human Prion Diseases

Orru C., Gambetti & Caughey, manuscript in preparation 2014
RT-QuIC detection of Genetic Human Prion Diseases

Orru C., Gambetti & Caughey, manuscript in preparation 2014
RT-QuIC analysis of olfactory mucosa samples from genetic CJD (E200K) & control patients
Conclusions

- Successfully tested additional pannel of sCJD OM & CSF samples
 - sensitivity ≥97% & specificity 100%
- Comparable sensitivity from samples collected by Cyto-brushes or Flocked swab
- Faster RT-QuIC detection of prion seeding activity in OM & CSF samples
- Efficient detection of prion seeding activity in gCJDE200K OM}
Acknowledgements

Funding

- The CJD Foundation
- Intramural Research Program, National Institute for Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)
- Generous donations in memory of Steven Medeiros by his family and friends, of Donna Millard by her husband and friends, of Stephen Able by his wife.
- Generous donations to the NIAID Gift Fund from Mary Hilderman Smith, Zoë Smith Jaye, and Jenny Smith Unruh in memory of Jeffrey Smith

NIAID, NIH
- Byron Caughey
- Bradley Groveman
- Andrew Hughson
- Gregory Raymond

University of Verona
- Gianluigi Zanusso
- Matilde Bongianni
- Giovanni Tonoli
- Sergio Ferrari
- Michele Fiorini
- Salvatore Monaco

Istituto Superiore di Sanità
- Maurizio Pocchiari
- Franco Cardone

Case Western Reserve University
- Pierluigi Gambetti
- Aaron Foutz

[Image: A group photo of researchers outside Rocky Mountain Laboratories.]