Human Stem Cell Derived Neural Models for CJD Prion Propagation and Drug Discovery

Zuzana Krejciova

9th July 2016
Hallmarks of human PrP prion diseases

- \(\text{PrP}^{\text{Sc}} \) accumulation
- Gliosis
- Neuronal loss
- Spongiosis
- Amyloid and plaque formation

We still don’t understand the underlying mechanism of neurodegeneration in human prion diseases due to the lack of relevant model system.
PRNP codon 129 genotype & CJD

<table>
<thead>
<tr>
<th></th>
<th>MM</th>
<th>MV</th>
<th>VV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal population</td>
<td>37%</td>
<td>51%</td>
<td>12%</td>
</tr>
<tr>
<td>sporadic CJD</td>
<td>71%</td>
<td>13%</td>
<td>16%</td>
</tr>
<tr>
<td>variant CJD</td>
<td>99%</td>
<td>< 1%</td>
<td>-</td>
</tr>
<tr>
<td>iatrogenic CJD</td>
<td>57%</td>
<td>20%</td>
<td>23%</td>
</tr>
</tbody>
</table>
Tg animal cell culture models for studying CJD

<table>
<thead>
<tr>
<th>Cell line</th>
<th>PrP<sup>Sc</sup></th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellar granule cells from Hu tg mice</td>
<td>vCD, sCJD, iCJD</td>
<td>Hannaoui et al., 2013</td>
</tr>
<tr>
<td>Mouse immortalized hypothalamic GT-1</td>
<td>rodent-adapted CJD</td>
<td>Arjona et al., 2014</td>
</tr>
</tbody>
</table>

- Adaptable for high throughput screening

Caveats:

- May not faithfully recapitulate disease conditions of human neurodegenerative diseases

- Small molecules extending survival in mice infected with mouse-adapted prions are ineffective against CJD prions

 (Berry et al., PNAS 2013)
There is no human cell culture model in which human PrPSc prions replicate

Possible reasons for failure:

- Transformed cells do not represent the phenotypic environment of human prion diseases
- Incompatibility between \textit{PRNP} codon 129 genotype between inocula and cultured cells
- Low PrPC expression
- Protein X
- PrPSc clearance rate is higher than PrPSc production
- High rate of cell division
- Tagging of PrPC compromise PrPSc formation and infectivity \textit{in vivo} & \textit{in vitro}
- Culture conditions
Human neuroglioma H4 line (MM)

3F4 (PrP^C)
GFAP
βIII-tubulin

PrP^C expression

40 kDa
30 kDa
20 kDa

mAb 3F4
hESC H9 (MV) exposed to prion infection

<table>
<thead>
<tr>
<th>Time points:</th>
<th>BSE</th>
<th>vCJD</th>
<th>AD</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 hours acute exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 hours recovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 hours acute exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 hours acute exposure - 24 hours recovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 hours acute exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 hours acute exposure - 48 hours recovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 hours acute exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 hours recovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PrP

Krejciova et al., 2011
Human fetal brain-derived neurospheres (MV)
Human fetal brain-derived spheres (MV)

Exposure to sCJD (VV$_2$)

0.4% sCJD (VV2) crude
3 d Exposure & 10 d Recovery
1.2% sCJD (VV2) filtered
3 d Exposure & 10 d Recovery

+ PK

+ EGF/FGF

Loading 1 well/T25 flask
mAb 3F4
Astrocytes contributing to neurodegeneration?

- Astrocytes play an important role in neurovascular and neurometabolic coupling

- In prion diseases neuron-glia interactions are thought to be involved
 (Gomez-Nicola et al., 2013; Asuni et al., 2014; Hennessey et al., 2015; Fang et al., 2016)

- PrPSc replicates in astrocytes in addition to neurons
 (Diedrich et al., 1991; Raebel et al., 1997; Jeffrey et al., 2004; Cronier et al., 2004; Victoria et al., 2016)
Exposure of human astrocytes to CJD brain homogenate

CJD inoculum

- Micro-pestle homogenization
- Fast-prep 24 homogenization
- Sonication
- Clarification
- Spin filter centrifugation

Exposure regime

- Exposure
- 1% spin filtered brain homogenate

Time points

- Recovery 8d
- Recovery 3d
- Recovery 0d

Analysis

- +PK
- sCJD inocula
- 0d Recovery
- 3d Recovery
- +Gnd
- PrP
- mAb P
hESCs derived astrocytes (MV)

Exposure to sCJD (MM)

Exposure to sCJD (VV₂)

Inocula sCJD MM
24h Exposure
72h Recovery
8d Recovery

Inocula sCJD VV
24h Exposure
72h Recovery
8d Recovery

mAb F20-108a

mAb 3F4
Generation of human cell culture model for studying CJD pathogenesis & drug discovery

Astrocyte progenitor cells (APC) generation from human iPS cells

Krencik & Zhang, Nat Protoc, 2011
Serio et al., PNAS, 2013
Astrocyte Differentiation

Neurospheres → Neurospheres enriched in astroglial progenitors → Mechanical Chopping → EGF+LIF Conversion → EGF+FGF2 Propagation → Astrocyte progenitors → Differentiation in CNTF media 2 wks

Images

- **A2B5 GFAP**
- **S100β GFAP**
- **PrPC GFAP**

Graph

- Glutamate uptake (nM/hour/cell)
 - HEK293
 - APC EGF+FGF2
 - Astrocytes CNTF

Western Blot

- **PrPc**
- **β-actin**
Human astrocytes replicate CJD PrPSc \textit{in vitro} in a \textit{PRNP} codon 129-dependent manner

Krejciova Z., Alibhai J., et al., (submitted)
Replication of vCJD PrPSc in human astrocytes is \textit{PRNP} codon 129- and concentration-dependent

Astrocytes

- MM / Inoculum vCJD MM
- MV / Inoculum vCJD MM
- VV / Inoculum vCJD MM

0d post exposure

3d post exposure

mAb 3F4

Krejciova Z., Alibhai J., et al., (submitted)
Guanidine mediates cryptic PrPSc epitope retrieval

Control

CJD exposed/8d recovery

CJD exposed/8d recovery

-Gnd

-Gnd

-Gnd

inset

+Gnd

+Gnd

+Gnd

inset

20 µm

20 µm

mAb HuM-P

Krejciova Z., Alibhai J., et al., (submitted)
Human astrocytes replicate PrPSc when the CJD inoculum & cell genotype are matched

Krejciova, Alibhai, et al., (submitted)

Human astrocytes replicate PrPSc when the CJD inoculum & cell genotype are matched.

Krejciova, Alibhai, et al., (submitted)
Human astrocytes (VV) replicate sCJD (VV2) PrP^Sc prions.

Krejcirova Z., Alibhai J., et al., (submitted)

Signal intensity/cell

- **sCJD (VV2)**
 - 0 d post exposure
 - 8 d post exposure

- **vCJD (MM)**
 - 0 d post exposure
 - 8 d post exposure

Astrocytes (VV)

mAb HuM-P
3D reconstruction of PrPSc accumulation in astrocytes (VV) exposed to sCJD (VV2)

control

sCJD (VV2)
8d post exposure

Krejciova Z., Alibhai J., et al., (submitted)
Summary

Proliferating ES, FDC-like and transformed human cells failed to propagate CJD PrP^sc in vitro

Human iPS cell-differentiated astrocytes are susceptible to CJD PrP^sc replication in vitro in a PRNP codon 129 dependent manner

We hypothesize that astrocytes might contribute to prion-induced neurodegeneration in a non-cell autonomous manner, either by impairment of neuroprotective function or gain of neurotoxic function by generating neurotoxic signals in response to prion infection

Our model is providing a new in vitro system for accelerated mechanistic studies and drug discovery
Acknowledgements

National CJD Research & Surveillance Unit
Dr Mark Head
Dr James Alibhai
Prof James Ironside

Institute for Neurodegenerative Diseases
Dr Stanley Prusiner
Dr Kurt Giles

MRC Centre for Regenerative Medicine
Prof Siddharthan Chandran
Dr Nina Rzechorzek
Dr Chen Zhao

The Roslin Institute
Prof Jean Manson

Funding

NC 3Rs
National Centre for the Replacement Refinement & Reduction of Animals in Research

DH Department of Health

NIH National Institute on Aging

Daiichi-Sankyo

Creutzfeldt-Jakob Disease Foundation, Inc.
Non-Expert Summary

Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt-Jakob disease. For four decades, scientists have attempted to produce experimental models that approximate prion diseases – both to develop new therapies and to understand the mechanisms of the disease – but until now these efforts have been unsuccessful. For example, drugs developed using mice infected with prions have been shown to be ineffective against human prions.

Here we show that prions can infect brain cells (so-called astrocytes) derived from human stem cells, and determine which factors influence their susceptibility to prions. These include genetics and the cells’ state of development. Our work thus addresses a long-standing gap, providing a more relevant tool for studying prion diseases and accelerating drug discovery.