Systematic evaluation of the zoonotic potential of different CWD isolates.

Rodrigo Morales, PhD
Assistant Professor
Protein Misfolding Disorders lab
Mitchell Center for Alzheimer’s disease and Related Brain Disorders
Department of Neurology
University of Texas Health Science Center at Houston
Disclosure

Dr. Rodrigo Morales is an inventor in a patent application related to the Protein Misfolding Cyclic Amplification technology
The CWD problem

✓ CWD affect deer, elk, moose and other cervids both captive and wild range.

✓ CWD affects almost all cervidae in experimental conditions

✓ CWD was first described in 1967 with infected mule deer on a breeding farm in Colorado. Now has been detected in 22 states of the USA, Canada, South Korea, Norway and Finland.

✓ Clinical signs include wasting, change of behavior, head tremors, excessive drinking and urination, reduced eating, walking repetitive path, pneumonia, disorientation, lose control of bodily function and death.

✓ Disease mostly affects adults 17 months to 15+ years. Clinical duration >1 year. Time between exposure to infectious material and clinical disease is at least 17 months.

✓ There is no treatment or vaccine available. Measures to limit further spreading include quarantine, depopulation and decontamination of farms. It is unclear how efficient these measures are.

✓ Cervid farming industry was estimated to represent $18.1 billion US dollars in 2011 (only related to hunting).
Some *cervidae* affected by CWD

- White-tailed deer
- Mule deer
- Moose
- Elk
- Red deer
- Sika deer
- Caribou
- Muntjac deer
Biological samples relevant to CWD transmission and diagnosis

- Brain
- Saliva
- Blood
- Antlers
- Retropharyngeal lymph nodes
- Placenta
- Meat
- Urine
- Rectal mucosa lymph nodes
- Feces
Role of the environment in prion transmission

Healthy animals → Prions enter the environment → Prions are retained and buildup in the environment → Prions are spread → Animals exposed to contaminated materials → Prion infected animals

Prions enter the environment
CWD detection in blood of pre-symptomatic white-tailed deer

Detection of Prions in Blood of Cervids at the Asymptomatic Stage of Chronic Wasting Disease

Carlos Kramm, Sandra Pitzhorn, Adam Lyon, Tracy Nichols, Rodrigo Morales & Claudio Soto

In addition, we successfully implemented PMCA for the pre-symptomatic detection of CWD in saliva, feces, semen and sexual related tissues, as well as environmental components.

Summary of results obtained in a blind study of detection of infectious prions in blood samples from white-tailed deer (WTD) at various stages of CWD.

<table>
<thead>
<tr>
<th>CWD Status</th>
<th>Total no. of deer</th>
<th>PMCA positive</th>
<th>Correct diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic WTD (B+ LN+)</td>
<td>5</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>Asymptomatic WTD (B+ LN+)</td>
<td>48</td>
<td>46</td>
<td>96%</td>
</tr>
<tr>
<td>Asymptomatic WTD (B- LN+)</td>
<td>34</td>
<td>18</td>
<td>53%</td>
</tr>
<tr>
<td>Negative WTD (B- LN-)</td>
<td>13</td>
<td>0</td>
<td>100%</td>
</tr>
</tbody>
</table>

1Samples were declared as positive in PMCA if at least one of the replicates gave a protease-resistant PrPSc signal in any of the PMCA rounds analyzed.

Kramm et al. 2017. Scientific Reports
Mimicking inter-species transmissions of prions by PMCA

Crossing the Species Barrier by PrP^{Sc} Replication In Vitro Generates Unique Infectious Prions

Joaquin Castilla, 1 Dennisse Gonzalez-Romero, 1, 4 Paula Saa, 1, 5, 6 Rodrigo Morales, 1, 2, 4 Jorge De Castro, 1 and Claudio Soto 1, 4

Cell

Barria et al. 2011. JBC
In vitro evaluation of the zoonotic potential of different animal isolates

PMCA reproduced expected inter-species transmissions of animal prion diseases in “humanized” models
Prnp polymorphisms in white-tailed deer

![Diagram of Prnp polymorphisms in white-tailed deer](image)

<table>
<thead>
<tr>
<th>Designation</th>
<th>Percentage in Deer Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(CWDP^\text{mm})</td>
</tr>
<tr>
<td>wt</td>
<td>90.6</td>
</tr>
<tr>
<td>G96S</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Modified from Johnson et al., 2006

Modified from Kelly et al., 2008
PrP 96GG – CWD prion isolates have greater potential to template misfolding of human PrP\(\text{C}\) compared to its PrP 96SS counterpart
PrP 96SS CWD adapted in PrP 96GG substrate has a low potential to misfold human PrPC. Serially adapted PrP 96SS prions in homologous substrate has a greater zoonotic potential.
Assessing inter-species CWD transmissions by PMCA

Adapted CWD PrP 96SS isolates have higher inter-species transmission potentials compared to their PrP 96GG counterparts.
Conclusions and Future Directions

- We have developed a highly sensitive and specific CWD-PMCA platform to be used as a diagnostic tool.
- Current PMCA set up allow us to mimic relevant prion inter-species transmission events.
- Polymorphic changes at position 96 of the prion protein apparently alter strain properties and, consequently, the zoonotic potential of CWD isolates.
- Inter-species and inter-polymorphic $\text{PrP}^C \rightarrow \text{PrP}^\text{Sc}$ conversions further increase the spectrum of CWD isolates possibly present in nature.
- CWD prions generated in 96SS PrP^C substrate apparently have greater inter-species transmission potentials.
- Future experiments will explore the zoonotic potential of CWD prions along different adaptation scenarios, including inter-species and inter-polymorphic.
Aknowledgments

Collaborators:

- Dr. Tracy Nichols (USDA)
- Dr. Glenn Telling (Colorado State University)
- Dr. Justin Greenlee (USDA)

Funding:

- National Institute of Allergy and Infectious Diseases
- UTHSC Cancer Center
- The University of Texas Health Science Center at Houston
- McGovern Medical School
- Alzheimer's Association
- CREUTZFELDT-JAKOB DISEASE FOUNDATION, INC.
Acknowledgements

The **Eugene A. Riedel Memorial Grant**, contributed by Jacqueline Riedel

The **Jeffrey A. Smith Memorial Grant**, contributed by The Jeffrey and Mary Smith Family Foundation

The **Tom Stivison Memorial Grant**, contributed by Cookie Stivison

The **Strides for CJD Grant**, contributed by the Families of the CJD Foundation

The **CJD Foundation Grant**, contributed by The Families of the CJD Foundation