Determining the Therapeutic Potential of Anti-PrP Nanobodies

Jiyan Ma
Van Andel Research Institute
<table>
<thead>
<tr>
<th>Humans</th>
<th>Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporadic</td>
<td>Scrapie – sheep, goats</td>
</tr>
<tr>
<td>Sporadic Creutzfeldt-Jakob disease (sCJD)</td>
<td></td>
</tr>
<tr>
<td>Sporadic fatal insomnia</td>
<td></td>
</tr>
<tr>
<td>Variably Protease-sensitive prionopathy (VPSPr)</td>
<td>Chronic Wasting Disease (CWD)</td>
</tr>
<tr>
<td>Inherited</td>
<td>– deer, elk</td>
</tr>
<tr>
<td>Gerstmann-Sträussler-Scheinker syndrome (GSS)</td>
<td>TME – mink</td>
</tr>
<tr>
<td>Fatal familial insomnia (FFI)</td>
<td>BSE – cattle</td>
</tr>
<tr>
<td>Familial Creutzfeldt-Jakob disease (fCJD)</td>
<td>FSE – domestic cats, captive wild cats</td>
</tr>
<tr>
<td>Acquired</td>
<td>Exotic Ungulate Spongiform Encephalopathy</td>
</tr>
<tr>
<td>Iatrogenic Creutzfeldt-Jakob disease (iCJD)</td>
<td>– exotic zoo ruminants of the family Bovidae (kudu, elands, etc)</td>
</tr>
<tr>
<td>Kuru</td>
<td>TSE in non-human primates – captive</td>
</tr>
<tr>
<td>Variant Creutzfeldt-Jakob disease (vCJD)</td>
<td>lemurs, Rhesus macaque</td>
</tr>
</tbody>
</table>
Prion Protein (PrP)

Aguzzi and Heikenwalder *Nature Reviews Microbiology* 4, 765–775
PrP_C
- 42% α-helix, 3% β-sheet
- Soluble in mild detergents
- Sensitive to protease digestion
- Sensitive to PI-PLC digestion

PrP_{Sc}
- Almost all β-sheet
- Insoluble in mild detergents
- Resistant to protease digestion
- Resistant to PI-PLC digestion
Prion infectivity: Seeded conversion

Prion strains
Cell membrane

Changes in the cell

Toxicity to neurons

Targets
- \(\text{PrP}^\text{Sc} \)
- \(\text{PrP}^\text{C} \)
- Cellular changes

Agents
- Small molecules
- Antibodies
PrPSc

Advantage
• Disease specific

Potential pitfalls
• Prion strains
• Difficult to generate PrPSc-specific reagents

Cellular changes

Advantage
• Independent of strains

Potential pitfalls
• Affecting other cellular processes

IND24
• Significantly increase the life span of mouse prion infected mice
• Ineffective against human prions

GSK2606414
• penetrates the blood-brain barrier
• prevents clinical disease in prion-infected mice
• but severe side effects (toxicity)
PrPC

Advantage
- Independent of strains
- Bind to a larger region of a protein

Potential pitfalls
- Potential toxicity due to PrP binding
- Difficult to cross the blood brain barrier (BBB).

Thus far, PrPC appears to be a good target and the therapeutic effects of anti-PrP antibodies are better than small molecules.

But, crossing the blood brain barrier appears to be a major obstacle for diseases already reached central nervous system.

Monoclonal antibodies inhibit prion replication and delay the development of prion disease

Monoclonal antibodies inhibit prion replication and delay the development of prion disease

Anthony R. White*, Perry Enever*, Mourad Tayebi†, Rosey Mushens†, Jackie Linehan‡, Sebastian Brandner‡, David Anstee‡, John Collinge‡ and Simon Hawke*

i.p. injection of anti-PrP antibody
- Prevents prion disease in mice received intraperitoneal prion infection (> 500 dpi)
- No effect against mice received intracerebral prion infection.
Encoded by two different genes

Encoded by one gene
Adeno-associated Virus (AAV)

- A replication-defective virus found in humans (It requires co-infection of other virus, such as adenovirus or herpesviruses, for its replication).
- ~ 80 - 90% of adults are positive with AAV, but it is not associated with any symptoms or disease.
- In human cells, it preferentially integrate into the AAVS1 region, ~ 2Kb region on the long arm of human chromosome 19.
- Gene therapy treatment of spinal muscular atrophy (SMA) with AAV vector has been approved by FDA.
- Scientists are actively searching for AAVs that can cross the BBB. In C57BL mice, the newly identified AAV-PHP.eB is able to cross BBB.
Recombinant PrP
Probing the N-Terminal β-Sheet Conversion in the Crystal Structure of the Human Prion Protein Bound to a Nanobody

Romany N. N. Abshkaron, Gabriele Giachin, Alexandre Wohlkonig, Sameh H. Soror, Els Pardon, Giuseppe Legname, and Jan Steyaert

Graph:
- MoPrP
- MoPrP•Nb484
- Nb484

Table:
<table>
<thead>
<tr>
<th>Nb484 (µM)</th>
<th>0</th>
<th>0</th>
<th>0.75</th>
<th>1.75</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK -</td>
<td>ScGT1 -</td>
<td>GT1 -</td>
<td>ScGT1 -</td>
<td>ScGT1 -</td>
<td>ScGT1 +</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Image:
- Western blot showing actin bands.
AAV delivery to central nervous system

Control

Exposure time: 3s
Exposure time: 200ms

14 days

AAV-GFP

Exposure time: 200ms

Higher Amount

Exposure time: 200ms

Lower Amount

Exposure time: 200ms

21 days

Anti-GFP

GFP	Nb1	Nb2
L | H | L | H | L | H

Anti-Flag
Summary

• We identified nanobodies that bind to not only PrP expressed in bacteria, but also the fully modified PrP expressed in mammalian cells.

• These anti-PrP nanobodies are able to inhibit prion replication in vitro, and do not show any neurotoxicity.

• The anti-PrP nanobodies have been packaged into AAV and successfully expressed in the central nervous system.

• The study of the potential therapeutic effect of expressing anti-PrP nanobodies by AAV in mice is underway.
Acknowledgements

• The **Katie Pohl Dopirak Memorial Grant**, contributed by The Pohl and Dopirak Families.

• The **Cheryl Molloy Memorial Grant**, contributed by Tim Molloy and Family.

• The **Jeffrey A. Smith Memorial Grant**, contributed by The Jeffrey and Mary Smith Family Foundation.

• The **Tom Stivison Memorial Grant**, contributed by Cookie Stivison.

• The **CJD Foundation Grant**, contributed by the Families of the CJD Foundation.
Acknowledgements

Van Andel Research Institute
- Yue Ma
- Xinhe Wang
- Katelyn Becker
- Michelle Zhang
- Alena Drayton
- Kyle Ross

Vrije Universiteit Brussel
- Fei Wang
- Kayla VanderStel
- Romany Abskharon
- Juxin Ruan
- Jan Steyaert
- Alexandre Wohlkonig
- Els Pardon

Scuola Internazionale Superiore di Studi Avanzati (SISSA)
- Giuseppe Legname
- Gabriele Giachin