Nanoparticle-mediated brain delivery of a tetracationic porphyrin with potent anti-prion activities

Roberto Chiesa

Laboratory of Prion Neurobiology
Mario Negri Institute for Pharmacological Research
Milan, Italy
roberto.chiesa@marionegri.it

2019 CJD Foundation Family Conference
Conversion of PrPC into PrPSc is the key pathogenic event in prion diseases.

- Cellular protein
- Soluble
- Protease-sensitive
- 43% α-helix, 3% β-sheet
- NMR structure

- Disease-specific protein
- Insoluble/aggregated
- Partially protease-resistant
- 30% α-helix, 43% β-sheet
- 3D structure unknown
Possible therapeutic strategies for prion diseases

- Down-regulate PrP_C
- Stabilize PrP_C conformation
- Inhibit PrP_C-PrP_{Sc} interaction
- Inhibit PrP_{Sc} polymerization
- Inhibit PrP_{Sc} polymer fragmentation
- Enhance PrP_{Sc} degradation
- Block toxic signaling downstream of PrP_{Sc} replication

Vorberg and Chiesa, 2019
VA01: a porphyrin with potent anti-prion activity

VA01

Fe(III)TM-PyP

Caughey et al., 1998
Priola et al., 2000
Pharmacological chaperone for the structured domain of human prion protein

Andrew J. Nicolla, Clare R. Trevittb, M. Howard Tattumb, Emmanuel Rissea, Emma Quartermana, Amaury Avila Ibarraa, Connor Wrighta, Graham S. Jacksonb, Richard B. Sessionsa, Mark Farrowa, Jonathan P. Walthod, Anthony R. Clarkeh,2, and John Collingeh,2

aDepartment of Neurodegenerative Disease and bMedical Research Council Prion Unit, University College of London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; cDepartment of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom; and dDepartment of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
A cell-free PrPSc conversion assay
(Protein Misfolding Cyclic Amplification, PMCA)
VA01 inhibits PrPSc replication in PMCA

A

<table>
<thead>
<tr>
<th>PrPSc seed</th>
<th>PMCA</th>
<th>VA01 (10 μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>CT</td>
<td></td>
</tr>
<tr>
<td>1:5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>PrPSc seed</th>
<th>PMCA</th>
<th>Fe(III)TM-PyP (10 μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>CT</td>
<td></td>
</tr>
<tr>
<td>1:5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

Amplification factor

- CT
- VA01
- Fe(III)TM-PyP
A cell assay for analysis of anti-prion activity

Cultures of prion-infected N2a cells (ScN2a-22L)

- PK, 5 µg/ml for 30 min

- Non-infected cells
- Prion-infected cells

PK

1 2 3 4

PrP
VA01 is more potent than Fe(III)TMPyP in clearing prions from cells.
The prion-infected cerebellar organotypic cultures (COCS)

Wolf et al., 2015
VA01 is more potent than Fe(III)TM-PyP in the prion-infected COCS assay.

22L-infected COCS, treated for 1 week
Does VA01 reach the brain?
VA01 pharmacokinetics

10 mg/kg, i.p., single dose

10 mg/kg, i.p., chronic treatment
How can we boost the brain delivery of VA01?
PLGA

Poly(lactic-co-glycolic acid) (PLGA) nanoparticles

- Safe (FDA approved)
- Relatively inexpensive
- Amenable to chemical modification
- Forms nanoparticles
 - 100-200 nm
 - -20/-40 mv charge
 - can be loaded with various molecules
The g7 peptide improves brain delivery of PLGA nanoparticles

The g7 peptide

- Synthetic opioid-like glycopeptide modified to avoid opioid effects
- Crosses the BBB through receptor-mediated endocytosis
- Can be linked to PLGA
- g7-PLGA forms nanoparticles like PLGA
g7-PLGA NPs have been successfully used in mouse models of brain diseases
VA01-loaded g7-NPs reduce PrP^{Sc} levels in prion-infected COCS

22L-infected COCS, single treatment, analyzed after 48h
Summary

• VA01 inhibits PrPSc replication in PMCA, N2a cells and COCS

• VA01 is more potent than Fe(III)TM-PyP

• A fraction of VA01 reaches the brain after systemic administration but its biological activity in the brain is variable

• Functionalized nanoparticles (g7-NPs) improve brain delivery of drugs

• VA01 can be efficiently loaded in g7-NPs maintaining its anti-prion activity \textit{in vitro}
Conclusions

• VA01 is a promising therapeutic molecule for prion diseases

• Before testing the therapeutic efficacy of VA01 in preclinical models, we need to improve its brain penetration

• VA01-loaded g7-NPs are active *in vitro*

• We are now testing the brain delivery of VA01 loaded in g7-NPs
Acknowledgements

Mario Negri Institute, Milan, Italy
Prion Neurobiology Lab
Antonio Masone
Giada Lavigna
Elena Restelli
Ilaria Bertani
Laura Tapella
Liliana Comerio

Pharmacodynamics and Pharmacokinetics Lab
Jacopo Lucchetti
Claudia Fracasso
Marco Gobbi

University of Modena, Italy
Nanomedicine and Pharmaceutical Technology
Jason T. Duskey
Giovanni Tosi

University of Insubria, Varese, Italy
Dept. of Theoretical and Applied Sciences
Enrico Caruso
Stefano Banfi

Istituto Superiore di Sanità, Rome, Italy
Dept. Food Safety and Veterinary Public Health
Ilaria Vanni
Romolo Nonno

San Raffaele Hospital, Milan, Italy
Biomolecular NMR
Chiara Zucchelli
Giovanna Musco

University of Santiago de Compostela, Spain
CIMUS Biomedical Research Institute
Jesús R. Requena
Supported by

CREUTZFELDT-JAKOB DISEASE FOUNDATION, INC.
Supporting Families Affected by Prion Disease

The Cheryl Molloy Memorial Research Grant
Contributed by Tim Molloy and Family

Ministero della Salute