Genetic Prion Disease and How Genetics Might Help Us Understand Sporadic CJD

Professor Simon Mead
National Prion Clinic, University College London (UCL) Hospitals NHS Foundation Trust
MRC Prion Unit at UCL
Aims

• Describe prions, DNA, prion diseases, and genetic forms of the diseases
• Genes that alter the risk of getting sporadic CJD
• What does this mean for families?
• Inherited prion diseases, special opportunities
• How do these discoveries help us understand the diseases?
• Update on PRN100 treatment in London
Some of the first conversations we hear concern genetics

- How we have our “grandmother’s nose” or “father’s eyes”
- Identical twins striking example of effects of genetics
- Similarities beyond the superficial
- Genes determine to some extend which diseases we get
- Genes are variable between people in a population, some changes in the DNA code are common, some are very rare
- Disease risks are a mixture of genetic, environmental and bad luck influences, the relative contributions vary between diseases
Three main causes of prion disease

- Sporadic Creutzfeldt-Jakob disease
 - MAIN EXPLANATION: Bad luck

- Inherited prion disease
 - Genetic (mutation in the prion protein gene)

- Acquired prion diseases:
 - Variant CJD
 - Iatrogenic CJD
 - Exposure to prions in the diet medical procedures
Sporadic Creutzfeldt-Jakob disease

- Typically a rapidly progressive dementia with neurological features like jerky muscle movements and loss of balance
- Most patients will die with six months of onset
- Occurs seemingly at random in populations
- Risk over a lifetime ~1:5000 (cumulative of 1-2 per million per year)
- Doesn’t run in families, no known exposures (rare concurrences in families are to be expected)
Sporadic Creutzfeldt-Jakob disease

• BAD LUCK

• Spontaneous change in folding of prion protein or mutation of a single DNA molecule to make a mutant prion protein

• Reason to research genetics in CJD is to find molecular processes that influence/modify risk

• This might mean going from a lifetime risk of 1:5000 to 1:4000

• If you want to tackle a problem best to try and get a good understanding
Inherited prion disease

• Very varied types of brain diseases

• Can look just like CJD clinically

• Can present with fragmented sleep, problems with blood pressure, temperature, sweating (fatal familial insomnia)

• Can cause balance problems first, then later difficulty thinking (Gerstmann-Straussler-Scheinker syndrome) over 4-5 years

• Some cause very slowly progressive problems with thinking (prion protein gene insertions)

• Rarely causes problems with sensation and diarrhoea over many decades (truncation mutations)
Inherited prion disease

• All are caused by mutation (error in DNA code) in the gene that makes the prion protein

• We offer this test for all patients with apparently sporadic CJD

• This variation explains most of the risk of the inherited disease for a person's lifetime

• Some additional genetic changes may influence when the disease starts or the main symptoms (e.g., codon 129 in prion protein gene)

• We research genetics in inherited prion diseases to be confident which mutations cause which diseases at what age in order to better counsel people and help make choices
 • About reproduction
 • About having a test to see if a mutation has been inherited
Inherited prion disease

• People may learn they are at-risk of inherited prion disease after a diagnosis in a blood relative

• Special opportunities eg.

• To decide whether to have a test to see if you have inherited the mutation

• To decide whether or not to have children that might inherit the mutation

• Potentially to join studies or trials that aim to predict or prevent the disease
Cells and DNA

Simplified cell, containing different structures

DNA, different colours reflecting the “code”
The code is translated to make proteins

Chain of amino acids, forming a nascent protein

Ribosome translation machine

DNA is transcribed to RNA code
Normal human prion protein and the prion mechanism

Normal prion protein, one of >100,000 different body proteins

Abnormal prion protein, grows by binding and misfolding the normal form
PRNP – The gene that makes prion protein

<table>
<thead>
<tr>
<th>definite</th>
<th>4- OPR1</th>
<th>5- OPR1</th>
<th>8- OPR1</th>
<th>6- OPR1</th>
<th>9- OPR1</th>
<th>7- OPR1</th>
<th>12- OPR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>probable</td>
<td>P84S</td>
<td>P105S</td>
<td>S132I</td>
<td>R148H</td>
<td>D178DEL2BP</td>
<td>E211D</td>
<td></td>
</tr>
<tr>
<td>possible</td>
<td>S97V</td>
<td>A133V</td>
<td>D167N</td>
<td>D167G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>risk factor</td>
<td>S39L</td>
<td>2-OPRD</td>
<td>2-OPR1</td>
<td>S97V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poly</td>
<td>S17T</td>
<td>R26H</td>
<td>P30S</td>
<td>G54S</td>
<td>1-OPR1</td>
<td>1-OPR2</td>
<td>3-OPR1</td>
</tr>
<tr>
<td>resistance</td>
<td>M129V</td>
<td>G127V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Variants in *PRNP* influence risk of disease in different ways
Slopes of sCJD decline stratified by codon 129 genotype

Genotypes MM and VV confer increased risk.

UK Cohort study ~940 enrolled to date.

Age and gender not strong factors affecting progression.

Codon 129 is a powerful factor. It determines prion strain, and rates of progression. Fundamental to understanding CJD.
Summary so far

• Covered the causes and symptoms of prion diseases

• Molecular mechanisms including powerful effects of genetic variation at prion protein gene

• Now some of the research to find new genes for CJD
Genome wide association study

Measure 100,000s of common population genetic variations (polymorphisms)

Quality Control

Imputation using huge population panels to fill in gaps (millions of polymorphisms)

Statistical comparison of groups

Patients diagnosed with at least probable CJD

Healthy population control individuals

Patients diagnosed with at least probable CJD

Healthy population control individuals
Collaborative sCJD sample collection: Discovery

Cases 4110
Controls 13569
Principle components analysis

Controls
- Geis US
- FHS
- French
- EGA Mixed
- Spanish
- KORAF4
- KORAF3
- WTCCC2

Cases
- USA sCJD
- UK sCJD
- vCJD
- GER sCJD
- Other sCJD
Overall Results

<table>
<thead>
<tr>
<th>CHR</th>
<th>SNP</th>
<th>Nearest Gene</th>
<th>% in CJD</th>
<th>% in population</th>
<th>Combined P</th>
<th>Combined OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rs3747957 (A)</td>
<td>STX6</td>
<td>45</td>
<td>41</td>
<td>1.23 x 10^{-10}</td>
<td>1.14</td>
</tr>
<tr>
<td>20</td>
<td>Rs1799990 (A)</td>
<td>PRNP</td>
<td>34</td>
<td>29</td>
<td>9.61 x 10^{-17}</td>
<td>1.15</td>
</tr>
<tr>
<td>22</td>
<td>Rs2267161 (C)</td>
<td>GAL3ST1</td>
<td>71</td>
<td>68</td>
<td>1.97 x 10^{-10}</td>
<td>1.11</td>
</tr>
</tbody>
</table>
Summary so far

• Confident in three genetic effects that alter the risk of getting CJD

• What does this mean?

• How do the genetic effects work?
The genetic variant that confer risk of CJD makes more $STX6$ in the brain.
Syntaxin 6 expression

sCJD; cerebellum; Atlas Antibodies HPA038558 rabbit polyclonal IgG

Images prepared by Prof Sebastian Brandner, Zane Jaunmuktane, Jackie Linehan
Syntaxin-6 is a protein inside cells involved in the decision for vesicles to fuse with membranes.

STX6 is a known risk factor for Progressive Supranuclear Palsy, an uncommon neurodegenerative disease that can be mistaken for Parkinson’s disease.

Genetic effects seem to work the same way (same variants confer risk).

Shared mechanisms in related disorders.
What about *GAL3ST1*?

- Encodes galactocerebroside sulfotransferase
- Genetic variant encodes V29M change
- May affect metabolism of brain lipids
- Why this is important for CJD is the subject of further research
What about *GAL3ST1*?
Conclusions (genetics)

- Through kind contribution of DNA samples from around the world (mostly European ancestries populations) we have discovered new genes that increase the risk of CJD
 - *STX6* and *GAL3ST1*

- These are small but confident changes, with no implications for families, no change in risk for relatives of patients with sporadic CJD

- It helps us understand sporadic CJD better, at present main target for treatments and diagnosis is prion protein

- Going on to look at genetic determinants of how fast the disease progresses, and age it starts
PRN100: Progress with special needs treatment

- First patient commenced PRN100 October 2018 following legal hearing at Court of Protection
- Treatment judged to be in patients best interest and lawful
- Five further patients treated with available drug stock: two were judged to have mental capacity able to consent
- No acute drug reactions and no evidence side effects after several months treatment at highest doses
- No need to progress to ICV (IV CSF levels encouraging)
- Cannot be clear whether clinical response given highly variable clinical course of CJD and small numbers
- All patients have now died
- See UCLH website for Q&A and updates: http://www.uclh.nhs.uk/News/Pages/PrionCJD.aspx
Prion immunotherapeutics
Azy Khalili-Shirazi, Simon Mead, Nicola Muirhead, Caroline Potter,
Stephanie Canning, Jacqueline McDonald, Peter-Christian Klöhn,
Michael Farmer, Jacqueline M Linehan, Catherine O'Malley, Mar
Fernandez de Marco, William Taylor, Mark Farrow, Sebastian Brandner

Funders: MRC; UCLH NIHR BRC; Jon Moulton
Charitable Foundation; CureCJD Campaign

www.prion.ucl.ac.uk
www.nationalprionclinic.org
Acknowledgements

MRC Prion Unit at UCL
Emma Jones (PhD student)
Athanasios Dimitriadis (PhD student)
Liam Quinn (PhD student)
James Uphill
Holger Hummerich
Ron Druyeh
Tracy Campbell
Penny Norsworthy
Emmanuelle Vire
Will Taylor
Helen Speedy
Jerome Whitfield
Jackie Linehan
Zane Jaunmuktane
Sebastian Brandner
John Collinge

National Prion Clinic Staff

PNGIMR
Michael Alpers

Germany
Inga Zerr
Saima Zafar

France
Stephane Haik
Jean-Louis Laplanche
Jean-Philippe Brandel

USA
Pierluigi Gambetti
Brian Appleby
Michael Geschwind

Italy
Piero Parchi
Fabrizio Tagliavini
Maurizio Pocchiari
Anna Poleggi
Anna Ladogana

UCL Genetics
Vincent Plagnol
Doug Speed

Switzerland
Herbert Budka
Adriano Aguzzi

Austria
Gabor Kovacs

Scotland
Richard Knight

Netherlands
SJ van Der Lee
Cornelia Van Duijn

Australia
Steve Collins

Spain
Miguel Calero
Pascual Sanchez Juan

Poland
Pawel Liberski