Targeting the endogenous proteolytic processing of PrP^C as a therapeutic strategy against prion diseases

Hermann Clemens Altmeppen
Institute of Neuropathology
University Medical Center Hamburg-Eppendorf (UKE)
Hamburg, Germany
The basis of prion diseases and therapeutic strategies

Self-perpetuating templated conformational conversion („seeded nucleation“)

Various PrP-knockout mouse models revealed that PrP^Sc conversion, prion spread and neurotoxicity absolutely depend on PrP^C expression

Therapeutic intervention has been examined at nearly all steps

Prusiner (1982); Büeler et al. (1992); Brandner et al. (1996); Mallucci et al. (2003); Sandberg et al. (2010); [...]

PrP^C

PrP^Sc

Pathogenic
β-sheet-rich
PK resistant
aggregation-prone

Physiological
α-helical
PK sensitive

PrP-KO

Various PrP-knockout mouse models revealed that PrP^Sc conversion, prion spread and neurotoxicity absolutely depend on PrP^C expression.
proteases are enzymes that cleave proteins

PrP^C is subject to evolutionary conserved proteolytic cleavages

physiological and pathological roles of the resulting fragments (?)
Enzymatic cleavage of PrP_C: Why not taking advantage of a process that is provided by nature?

- reduction of PrP_C at the plasma membrane
- production of protective fragments (?)

Pharmacological stimulation of the relevant proteases as a therapeutic option
ADAM10 is the functionally relevant sheddase of PrP_C

We have studied the role of ADAM10 in PrP_C biology in different mouse models.

Primary neurons of E14 mice:

<table>
<thead>
<tr>
<th>Neuronal lysates</th>
<th>IP of media supernatants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prnp<sup>0/0</sup></td>
<td>Prnp<sup>0/0</sup></td>
</tr>
<tr>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>tga20 KO</td>
<td>tga20 KO</td>
</tr>
<tr>
<td>A10 KO</td>
<td>A10 KO</td>
</tr>
</tbody>
</table>

Lack of ADAM10
- abolishes shedding of PrP_C
- results in increased PrP_C levels

Lack of shed PrP might contribute to phenotypes of ADAM10 knockout mice (supporting a protective role)

ADAM10 is the functionally relevant sheddase of PrPC and a regulator of its membrane homeostasis.
Our most recent ADAM10 KO model revealed that shedding affects several pathomechanistic aspects.

In line with a previous study using ADAM10 overexpressing mice (Endres et al., 2009) these data support a protective role of ADAM10 in prion diseases.

Altmeppen et al. (2015) eLife
Glatzel et al. (2015) Prion
Indirect analysis of PrP shedding (altered steady-state levels) versus direct assessment of shed PrP in tissue samples

- masked by the vast excess of full-length PrP_C
- Solution: Generation of an antibody specific for shed PrP_C (while not recognizing the full-length protein)

A novel antibody raised specifically against shed PrP will improve our ongoing and future studies.

- All glycoforms can be shed (yet there is a preference for *diglycosylated* PrPᵦ)
- Lack of ADAM10 is not compensated by another protease
- No other cell types seem to contribute to PrP shedding in the brain (self-protection mechanism of neurons?)

With this new antibody we now have a powerful tool to accomplish our proposed study of a pharmacological stimulation of ADAM10-mediated shedding of PrPᵦ.
Stimulation of ADAM10 in prion disease mouse models as a novel therapeutic strategy

Intracerebral inoculation with prions (RML / 22L)

- Clinical phenotype
- Detailed assessment of neuropathological markers
- PrPSc conversion
- Neurotoxic signalling

...
Pharmacological stimulation of ADAM10 has recently been investigated as a treatment option in Alzheimer’s disease (Endres et al., 2014, Neurology)

As a **proof of principle study**, we will assess levels of shed PrP (baseline versus treatment) in the liquor (CSF) of the very same patient cohort.

DATA
(under construction due to ongoing analysis)

Elevated CSF levels of shed PrP upon treatment with the ADAM10 stimulator would clearly support our hypothesis and complement the data obtained in mice.
Outlook

- Cell culture based studies on the mechanistic finetuning of PrP\(^c\) shedding
- Investigating the physiological functions of shed PrP
- Identification of the protease(s) responsible for the \(\alpha\)-cleavage of PrP\(^c\)
- **Combination therapy** – Stimulation of PrP cleavage **PLUS** PrP\(^c\) stabilizing compounds
- **Rational drug design** (improved performance & specificity of stimulators)
• Despite enormous efforts and relevant progress during the past decades there is still no effective treatment against prion diseases
• The prion protein (PrP^C) is cleaved by endogenous proteases (i.e. protein-cleaving enzymes)
• Cleavage of PrP by such enzymes has been shown to significantly impact on prion diseases
• ADAM10 is a protease that releases nearly full-length PrP from the plasma membrane. Lack of ADAM10 in mouse brains leads to drastically shortened survival time upon prion infection. Overexpression of ADAM10, in contrast, results in prolonged survival.
• Activity of enzymes can be manipulated and pharmacological stimulation of ADAM10-mediated shedding of PrP^C is investigated as a novel treatment option against prion diseases