Antisense Oligonucleotides to Delay or Prevent Onset of Prion Disease in Mice

Byron Caughey
Slides for CJD Foundation Meeting July 2016
Outline

• What is a prion, and how can we stop it?
• Why target the healthy protein?
• Why antisense technology?
• Progress so far
• Plans for preclinical studies
What is prion disease?

A healthy protein that your body normally produces

PrP^c

A misfolded protein that kills brain cells

PrP^{Sc}
Why do we want to reduce PrPC levels?

Effect of mouse PrPC expression level on disease progression in mice

- **Time to terminal disease**
- **Time to first symptoms**
Why do we want to reduce PrPC levels?

Effect of mouse PrPC expression level on disease progression in mice

- **Time to terminal disease**
- **Time to first symptoms**

Mice that produce more than the normal amount of PrPC get sick and die sooner.
Why do we want to reduce PrPC levels?

Effect of mouse PrPC expression level on disease progression in mice

- Mice that produce less than the normal amount of PrPC stay healthy longer.
- Mice that produce more than the normal amount of PrPC get sick and die sooner.

(days post-infection vs. PrPC expression level (fold wild-type))
Why do we want to reduce PrP_C levels?

Effect of mouse PrPC expression level on disease progression in mice

- Mice that produce **no** PrP_C **never** get prion disease.
- Mice that produce **less** than the normal amount of PrP_C stay healthy **longer**.
- Mice that produce **more** than the normal amount of PrP_C get sick and die **sooner**.
Is it safe to reduce PrPC levels?

• Mice engineered to produce \textbf{no} PrPC have only mild health issues (Bueler et al 1992, Bremer et al 2010)

• Mice engineered to produce \textbf{half} the normal amount of PrPC are indistinguishable from normal mice (Bremer et al 2010)

• Humans with only 1 functional copy of the prion protein gene, instead of 2, are healthy (Minikel et al 2016)
Therapeutic hypothesis

• If we can make people produce less PrPC, they will stay healthy longer
Therapeutic hypothesis

- If we can make people produce less PrP_C, they will stay healthy longer

- …and how can we do that?
Antisense targets RNA before the protein is produced
What is antisense technology and how does it work?

- An **antisense oligonucleotide (ASO)** is a 20-mer of chemically modified DNA.
- It is complementary to 20 bases of RNA sequence.
- Binds to the RNA and causes the enzyme RNase H to break down the RNA.
- Reduces the amount of a specific RNA, thereby reducing the amount of a specific protein.
- Different ASOs have been developed against many different RNAs for many different diseases.
Antisense is already in clinical trials for other neurological diseases

- ASOs for brain disorders are usually dosed into intrathecal space (base of spine) once per four months
- Patient's experience is similar to undergoing a lumbar puncture (e.g. at Michael Geschwind's study at UCSF)
- Phase 1 trial in spinal muscular atrophy (nusinersen / SMNRx) found IT delivered ASOs to be safe and found preliminary evidence of efficacy (Chiriboga et al 2016), program is currently in phase 3
- Phase 1 trial in Huntington's disease launched last fall
 - Aims to reduce huntingtin RNA levels, similar to our goals for PrP
Antisense meets all the requirements to be a sound therapeutic strategy

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Why ASOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe for chronic use</td>
<td>• There is one ASO drug against a different RNA already approved and marketed (Kynamro, for high cholesterol)</td>
</tr>
<tr>
<td></td>
<td>• Preliminary data from ASO trials for spinal muscular atrophy indicate ASOs are well-tolerated in the human brain</td>
</tr>
<tr>
<td>Gets into brain</td>
<td>• ASOs are stable for multiple months and can be injected into base of spine, directly into cerebrospinal fluid, a few times per year</td>
</tr>
<tr>
<td></td>
<td>• Monkeys treated with ASOs for Huntington's disease have reduced huntingtin levels across many brain regions</td>
</tr>
<tr>
<td></td>
<td>• Preliminary data from spinal muscular atrophy trials indicate good ASO brain distribution in humans</td>
</tr>
<tr>
<td>Likely to translate from mouse studies to</td>
<td>• By targeting RNA, ASOs slow the disease process upstream of species- and strain-specific problems</td>
</tr>
<tr>
<td>humans</td>
<td>• Should be effective in multiple species and against all subtypes of prion disease</td>
</tr>
</tbody>
</table>
Previous work on ASOs for prion disease

- In addition to targeting RNA, some ASOs happen to also interfere directly with prion formation in cells and in mice (Kocisko et al 2006, Karpuj et al 2007)
- An ASO against PrP RNA was moderately effective at delaying disease in mice (Nazor-Friberg et al 2012)
- Improvements in ASO chemistry and sequence screening offer opportunities for more effective, longer-lasting, and safer ASOs.
Goals of our preclinical study

- Develop ASOs against the mouse prion protein RNA
- Dose ASOs directly into mouse brain (intraventricular injection)

- **Potency**: How much we can reduce PrP levels in the mouse brain
- **Efficacy**: How much can ASOs extend the survival time of mice infected with prions?
- **Safety**: Are ASOs well tolerated in these mice?
- **Biomarkers**: Establish whether we can measure PrP levels and prion seeding activity levels in mouse brain as a predictor of efficacy.

- **Ultimate goal**: establish a proof of principle so that we can develop an ASO against the human prion protein RNA and get it into clinical trials
Identification of potent well-tolerated ASOs for use in preclinical studies

- 450+ ASOs screened in Hepa1-6 cells
- 26 of the most potent ASOs selected for large-scale synthesis and \textit{in vivo} testing
- 11 of the most \textit{in vivo} potent ASO selected for high dose, long-term tolerability screening
- The two most potent, with the longest duration of action and well-tolerated ASOs chosen for additional testing

\textit{In vitro} dose response of 2 lead mouse \textit{Prnp} ASOs
Two lead *in vivo* active rodent *Prnp* ASOs selected

- Study #1: Single 300μg ICV bolus injection in C57bl6 mice of ASO or PBS and tissue collection 2 weeks post-treatment

![Graphs showing Prnp mRNA (% PBS) in Cortex and Spinal cord for PBS, ASO 1, and ASO 2.](image)
Lead in vivo ASOs are active, well-tolerated and have long duration of action

- **Study #2:** Single 700μg ICV bolus injection in C57bl6 mice of ASO or PBS. Animals weighed and subject to neurological exam weekly. Tissue collection 8 weeks post-treatment.

RNA 8 week post-injection

- **No microglial activation**
- **No body weight change**

No adverse events on neurological exams and no histopathological findings
Plans for preclinical studies

<table>
<thead>
<tr>
<th>Question</th>
<th>Experiments planned</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potency</td>
<td>Screen 100s of ASOs in cells.</td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>Test 26 ASOs in mice.</td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>Re-test best ASOs for 4 or 8 weeks in two different varieties of mice to identify single most potent ASO.</td>
<td>In progress</td>
</tr>
<tr>
<td>Safety and efficacy</td>
<td>Inject mice at 4 different timepoints at 5 different doses to identify highest tolerated dose.</td>
<td>Planned</td>
</tr>
<tr>
<td></td>
<td>Dose prion-infected mice with ASOs at four different timepoints: prophylactic, immediately after infection, early infection, and late stages. Determine survival times and tolerability.</td>
<td>Planned</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>Determine reduction in PrP levels in mouse brain</td>
<td>Planned</td>
</tr>
<tr>
<td></td>
<td>Quantify prion seeding activity (RT-QuIC) in brains of mice treated or not treated with ASO</td>
<td>Planned</td>
</tr>
<tr>
<td></td>
<td>Establish ability to measure PrP levels in human cerebrospinal fluid as a potential biomarker</td>
<td>Planned</td>
</tr>
</tbody>
</table>
Collaborators

Rocky Mountain Labs
- Byron Caughey
- Greg Raymond

Ionis Pharmaceuticals
- Holly Kordasiewicz
- Hien Zhao
- Eric Swayze

Broad Institute
- Sonia Vallabh
- Eric Minikel

Western Washington University
- Jeff Carroll