Mechanisms of Selective Cell Vulnerability in Human Prion Disease

Christina Sigurdson
Department of Pathology
UC San Diego

13th Annual CJD Foundation Family Conference July 10-13, 2015

Protein misfolding and aggregation is a common feature of neurodegeneration

Modified from Forman et al, Nature Medicine, 2006

Prion conformational subtypes: Distinct disease phenotypes occurring in patients

distinct conformations

Human prion disease: prion plaques vary in morphology and cells targeted

Prion protein aggregates vary by morphology and cells targeted in mice

What mechanism underlies the selective cell vulnerability in prion disease?

Heparan sulfate proteoglycans and prion pathogenesis

- Diverse glycoproteins on cell surfaces and in the extracellular matrix
- Promotes the internalization of PrP^c and propagation of PrP^{sc}
- Prolongs prion disease in scrapie-infected rodents

Hypothesis:

PrP^{Sc} interaction with heparan sulfate proteoglycans is a major determinant underlying prion cell tropism

Defining the HS molecules associated with the most common human CJD subtypes

1) Purify PrPSc from 3 brain regions

Prion-infected brain

purification A $\frac{B}{P5}$ $\frac{B}{P5}$ $\frac{P5}{P5}$ $\frac{P$

2) Identify the PrPSc bound heparan sulfate by liquid chromatography-mass spectrometry (LC/MS)

Quantify N-SO₃, 2-O-SO₃, 6-O-SO₃ groups and N-acetylated, N-sulfated and N-unsubstituted glucosamine residues

Amyloid β: cerebral amyloid angiopathy (CAA)

How does the sulfation of HS molecules impact prion replication?

Heparin and pentosan polysulfate enhance prion conversion in a dose-dependent manner

Heparin and PPS lead to a decrease PrP^{Sc} levels in persistently prion-infected cells

Demonstrates the paradoxical effect of HS – in cell lysate amplification versus in live cells and in vivo

The impact of sulfation of HS chains on prion disease progression

Conclusions

- PrP^{Sc} purified for mass spectrometry analysis to identify the heparan sulfate bound to PrP^{Sc}
- Pentosan polysulfate promotes PrP^{Sc} formation in vitro in the PMCA assay

 Heparin and pentosan polysulfate decrease PrP^{Sc} levels in prion-infected cells in culture

UC San Diego

Acknowledgements

UC San Diego

Patricia Aguilar-Calvo

Tim Kurt

Cyrus Bett

Patricia Gaffney

Jun Liu

Peter Kobalka

Katrin Soldau

Case Western Reserve University
Witold Surewicz

Jeff Esko Chrissa Dwyer

National Institutes of Health, NINDS

Creutzfeldt-Jakob Disease Family Foundation

