Developing therapeutics for CJD using patient-specific iPSC-derived neurons

Wenquan Zou, MD/PhD

Departments of Pathology and Neurology
National Prion Disease Pathology Surveillance Center
Case Western Reserve University
Cleveland, Ohio
Email: wxz6@case.edu

Code	Genotype	Asso. Diseases	Phenotype
1	E200K (MM)	fCJD	Carrier
2	D178N (MM)	FFI	Carrier
3	F198S (MV)	GSS	Carrier
4	E200K (MM)	fCJD	Carrier
5	WT (MM)	sCJD	sCJD
6	5-Oct ins(VV)	CJD	Carrier
7	WT (MM)	Normal	Normal
8	WT (MV)	Normal	Normal
9	WT (MV)	AD	AD
10	WT (MM)	Normal	Normal
11	E200G (MV)	fCJD	Carrier
12	Del24bp	Diabetes	Diabetes
13	2-Oct ins (MM)	fCJD	Carrier
14	WT (MM)	sCJD	sCJD
15	WT (MM)	Amputation	Normal
16	WT (?)	Panniculectomy	Normal
17	WT (?)	sCJD	sCJD
18	WT (?)	Normal	Normal
19	WT (?)	Normal	Normal
20	WT (?)	Normal	Normal
21	E200K (MV)	fCJD	Carrier
22	WT (?)	sCJD	sCJD
23	D178N (MM)	FFI	Carrier
24	E200K (MV?)	sCJD	sCJD

Vulnerability to copper oxidative stress

Mitochondria from normal and mutant fibroblasts

Electron microscopy of patient-specific fibroblasts

PrP in patient-specific fibroblasts

RT-QuIC analysis of PrP seeding activity with patient-specific fibroblasts

Immunofluorescent staining of iPSC-derived neurons (WT) with BIII tubulin and PrP (Tohoku2)

Comparison of iPSC-derived neurons carrying WT and mutant PrP

Effect of prion on iPSCderived neurons

untreated

prion-treated

Summary of previous study

- Fibroblasts have been generated from asymptomatic mutation-carriers, sCJD patients, and controls
- Fibroblasts exhibit some prion-related phenotypes
- iPSC lines and iPSC-derived neurons have been generated from normal controls and two mutations
- Neurodegeneration-like changes were found in mutant and prion-challenged WT iPSC-derived neurons

Aim of new study

 Employ the newly-generated authentic human brain cells to investigate cellular mechanism of the anti-prion activity of the GSK compound, an inhibitor of protein kinase RNA-like ER kinase (PERK) that has been reported to effectively prevent neurodegeneration in prioninfected mice

PrPSc propagation in iPSC-derived neurons

Purification of PrPSc from infected human brains

Treatment of infected iPSCderived neurons with GSK compound

Treatment of iPSC-neurons with GSK compound

Summary of the current study

- PrP^{Sc} has been purified from infected human brains
- GSK compound may cure prion-induced neurodegeneration in WT iPSC-derived neurons
- GSK compound seems to improve neurodegeneration in iPSC-derived mutant neurons

Acknowledgements

Zou Lab

Jue Yuan Yian Zhan Yu Li

CJD Foundation

Debbie Yobs

Florence Kranitz

Donors

Jeanne Cole Kathy Esposito

Rhonda Fansler Sue Homer

Janine Kock Keith Welch

Deborah Wilson

<u>Participants</u>

Funding

CJD Foundation and NIH

Collaborators

Paul Tesar

Xin Qi

Byron Caughey

Christina Orru

Tingwei Mu

Hisashi Fujioka

Shulin Zhang

Miguel Quinones-Mateu

Brian Appleby

Robert Wyza

Mark Rodgers

Tetsuyuki Kitamoto

Dermatologists

Conclusions

Our study suggests the therapeutic effect of GSK compound on prioninfected or mutant iPSC-derived human neurons, which is consistent with previous observations by other groups with animal models