

Development of a quantitative, real-time Protein-Misfolding by Cyclic Amplification (PMCA) reaction.

Dr Graham Jackson

MRC Prion Unit at UCL 13th July 2019

Protein-only model of prion propagation

Human prion protein post-translational modifications

Prions and amyloid are distinct and commonly co-exist

PrP amyloid is transmissible but not pathogenic

Diagnostic markers of prion disease

- Tissue biopsy (western blot detection of PrPSc) *
- MRI
- Surrogate markers (14-3-3, Nf-L, Tau, etc)
- DDA (abnormal PrP)
- Amyloid seeding (QuIC)
- PMCA * (Prions)
- Cell-culture assay * (Prions)

* Can differentiate between prion strains

Elongated Oligomers Assemble into Mammalian PrP Amyloid Fibrils

M. Howard Tattum¹, Sara Cohen-Krausz², Azadeh Khalili-Shirazi¹ Graham S. Jackson¹, Elena V. Orlova², John Collinge¹ Anthony R. Clarke¹ and Helen R. Saibil²*

Defining 3D structure of infectious prions: negative stain EM

Dimensions from dual-tilt electron tomography

rec PrP fibril
Non-infectious
1 fibre
> 1 µm long
10-12 nm wide
7 nm thick

PrP rod
Infectious
2 fibres
< 0.2 µm long
20-25 nm wide
10-11 nm thick

Protein Misfolding by Cyclic Amplification (PMCA)

- High sensitivity
- Detects authentic prions
- Time consuming
- Requirement for ex vivo substrate
- Not quantitative
- Substrate difficult to manipulate

Generation of synthetic prions (SYPRIONS) by PMCA

- High sensitivity
- Detects authentic prions
- Time consuming

- Requirement for ex vivo substrate
- Not quantitative
- Substrate easy to manipulate

Bioassay confirmed prion infectivity

Inoculum (PMCA products diluted 1:1000)	Affected Animals / Total Animals (Tg20)	Mean Incubation Period +/- SD (Days)
PMCA Reaction	10/10	80.2 +/- 3.8
No Seed	9/9	87.7 +/- 4.6
No Sonication	1/9	85
No Homogenate	0/10	NA

The Scrapie Cell Assay (SCA)

- Cell-culture assay for rodent prions originally based upon a highly susceptible sub-clone of N2a cells (PK1).
- The Scrapie Cell Assay is based on the finding that discrete PrPSc-positive cells can be detected under the microscope.
- This enables quantification of the prion concentration in an unknown sample which is proportional to the number of infected cells.

Determination of infectious titre by SCA

Purification and MS of SYPRIONS

Negative stain EM confirmed SYPRIONS have a paired rod architecture in common with ex vivo material

RT-PMCA will enable sensitive, quantitation of prion replication rates

 $k_d >> k_c$

 k_n

Förster resonance energy transfer (FRET)

R_o - Förster distance of the pair of donor and acceptor, i.e. the distance at which the energy transfer efficiency is 50%

Fluorescence Anisotropy

Described by the Perrin Equation where r is the observed anisotropy , r_0 is the intrinsic anisotropy of the fluorophore (increased following FRET which is inherently anisotropic), τ is the lifetime of the fluorophore and θ is the rotational correlation time of the fluorophore.

$$r = \frac{r_0}{1 + \tau/\theta}$$

Hence the slower the motion of the fluorophore (the larger it is), the greater the anisotropy.

Cysteine mutants for fluorescent labelling

W31C

W98C

W144C

Y148C

F197C

Y217C

Förster radius of resonance energy transfer for Pyrene

0.001-0.3

1-10

0.10

0.86

Thioflavin T

NBD (nitrobenzoxadiazole)

412

485

482

535

Are SYPRIONS concentrated enough for fluorescence detection?

- Detection limit of fluoresescence < 1 pM
- Detection limit of FRET ~1nM
- Detection limit of RT-FRET (anisotropy increases following nonradiative transfer) ~2nM
- Size range for pyrene fluorescence lifetime (100kDa -100MDa)
- SYPRION concentration ~ 10ug/ml (~500nM monomer equivalent)

Summary

- We have generated high concentrations of synthetic prions that incorporate genetically modified prion proteins (PrP).
- We have made several genetically-modified PrPs that can be tagged with a variety of fluorescent molecules.
- We can use fluorescence to watch the growth of prion rods in real time during a PMCA reaction.
- Using fluorescence, resonance energy transfer and the asymmetry of emitted polarised light we can simultaneously monitor the loss of starting substrate and intermediate oligomers and prion rods as they form.
- The rate of growth of prion rods will be proportional to the number of prion seeds at the start of the reaction and will offer a rapid, sensitive and specific diagnostic measure.

Thank you!

The Joanne (Jody) Atchison Memorial Grant

The Cheryl Molloy Memorial Grant

A Bequest from Beverly Nylund Huchala, in Memory of Peter Huchala

The Tom Stivison Memorial Grant

The Strides for CJD Grant