
Determining the Therapeutic Potential of Anti-PrP Nanobodies

Jiyan Ma Van Andel Research Institute

Humans

Sporadic

Sporadic Creutzfeldt-Jakob disease (sCJD)

Sporadic fatal insomnia

Variably Protease-sensitive prionopathy (VPSPr)

Inherited

Gerstmann-Sträussler-Scheinker syndrome (GSS)

Fatal familial insomnia (FFI)

Familial Creutzfeldt-Jakob disease (fCJD)

Acquired

latrogenic Creutzfeldt-Jakob disease (iCJD)

Kuru

Variant Creutzfeldt-Jakob disease (vCJD)

Animals

Scrapie – sheep, goats

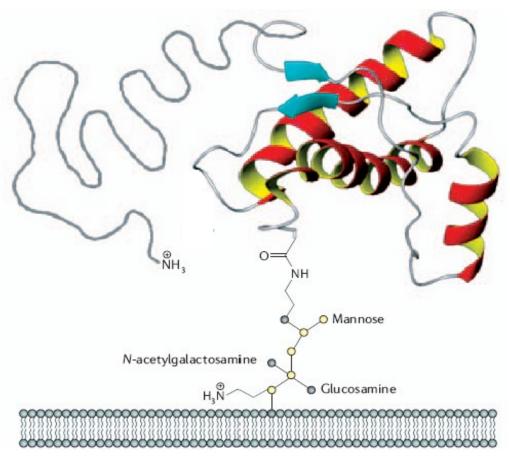
Chronic Wasting Disease (CWD)

- deer, elk

TME - mink

BSE - cattle

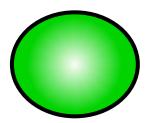
FSE – domestic cats, captive wild cats


Exotic Ungulate Spongiform Encephalopathy

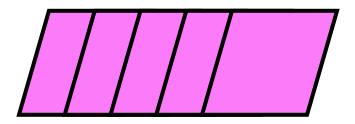
- exotic zoo ruminants of the family Bovidae (kudu, elands, etc)

TSE in non-human primates – captive

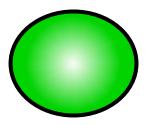
lemurs, Rhesus macaque

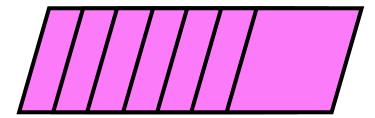

Prion Protein (PrP)

Aguzzi and Heikenwalder Nature Reviews Microbiology 4, 765–775

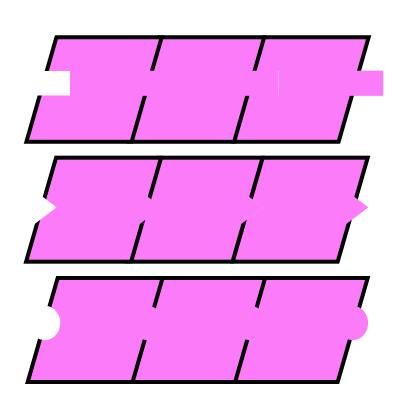

PrPC

- 42% α -helix, 3% β -sheet
- Soluble in mild detergents
- Sensitive to protease digestion
- Sensitive to PI-PLC digestion



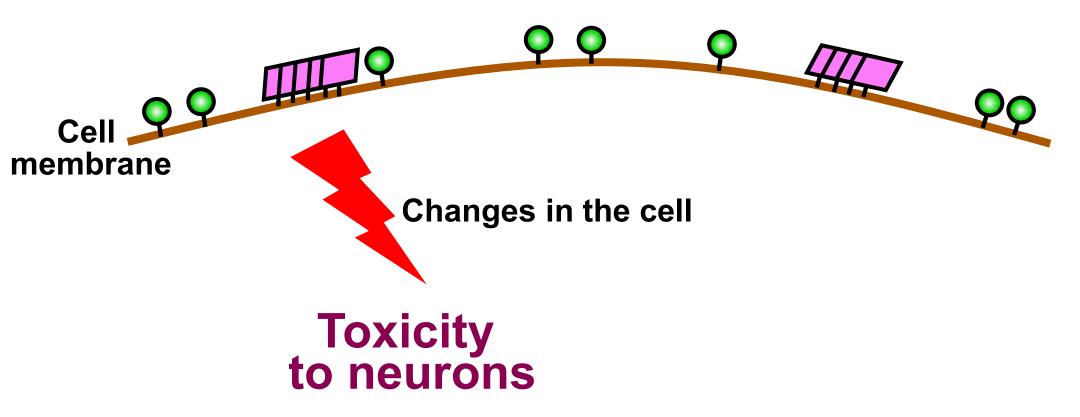

PrPSc

- Almost all β-sheet
- Insoluble in mild detergents
- Resistant to protease digestion
- Resistant to PI-PLC digestion



Prion infectivity: Seeded conversion

Prion strains



Targets

- PrPSc
- PrP^C
- Cellular changes

Agents

- Small molecules
- Antibodies

Advantage

Disease specific

Potential pitfalls

- Prion strains
- Difficult to generate
 PrP^{Sc}-specific reagents

Developing Therapeutics for PrP Prion Diseases

Kurt Giles, 1,2 Steven H. Olson, 1,2 and Stanley B. Prusiner 1,2,3

Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). doi: 10.1101/cshperspect.a023747.

IND24

- Significantly increase the life span of mouse prion infected mice
- Ineffective against human prions

Cellular changes

Advantage

Independent of strains

Potential pitfalls

Affecting other cellular processes

RESEARCH ARTICLE

PRION DISEASE

Oral Treatment Targeting the Unfolded Protein Response Prevents Neurodegeneration and Clinical Disease in Prion-Infected Mice

Julie A. Moreno,¹ Mark Halliday,¹ Colin Molloy,¹ Helois Radford,¹ Nicholas Verity,¹ Jeffrey M. Axten,² Catharine A. Ortori,³ Anne E. Willis,¹ Peter M. Fischer,⁴ David A. Barrett,³ Giovanna R. Mallucci¹*

Sci Transl Med. 2013 Oct 9;5(206):206ra138.

GSK2606414

- penetrates the blood-brain barrier
- prevents clinical disease in prion-infected mice
- but severe side effects (toxicity)

Advantage

- Independent of strains
- Bind to a larger region of a protein

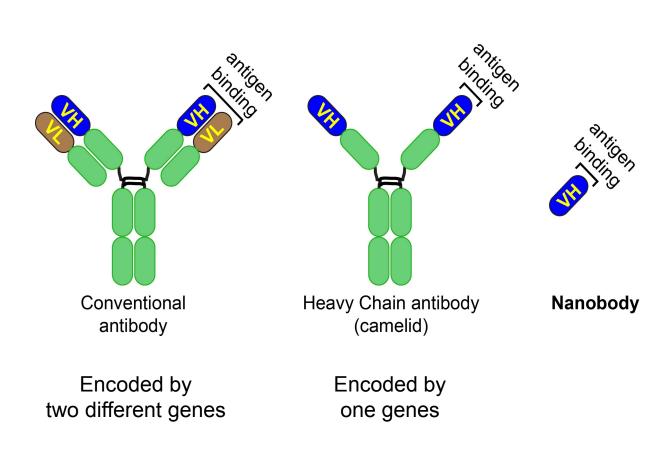
Potential pitfalls

- Potential toxicity due to PrP binding
- Difficult to cross the blood brain barrier (BBB).

Monoclonal antibodies inhibit prion replication and delay the development of prion disease

Anthony R. White*, Perry Enever*, Mourad Tayebi*, Rosey Mushens†, Jackie Linehan‡, Sebastian Brandner‡, David Anstee†, John Collinge*‡ & Simon Hawke*

Nature. 2003 Mar 6;422(6927):80-3.

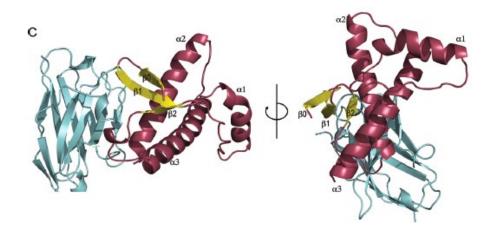

i.p. injection of anti-PrP antibody

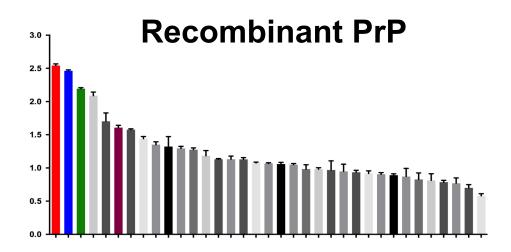
- Prevents prion disease in mice received intraperitoneal prion infection (> 500 dpi)
- No effect against mice received intracerebral prion infection.

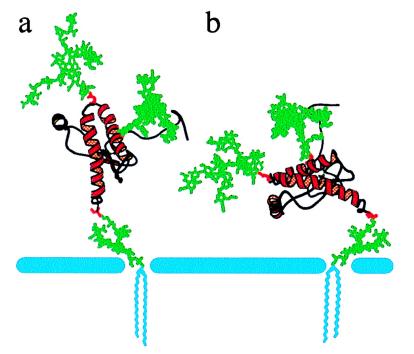
Thus far, PrP^C appears to be a good target and the therapeutic effects of anti-PrP antibodies are better than small molecules.

But, crossing the blood brain barrier appears to be a major obstacle for diseases already reached central nervous system.

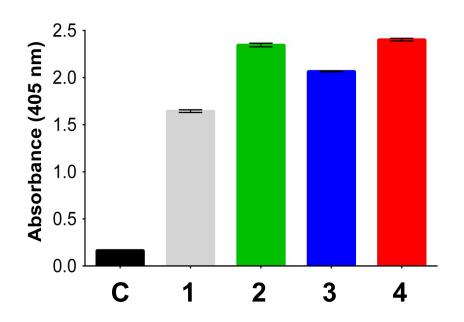
Adeno-associated Virus (AAV)


- A replication-defective virus found in humans (It requires co-infection of other virus, such as adenovirus or herpesviruses, for its replication).
- ~ 80 90% of adults are positive with AAV, but it is not associated with any symptoms or disease.
- In human cells, it preferentially integrate into the AAVS1 region, ~ 2Kb region on the long arm of human chromosome 19.
- Gene therapy treatment of spinal muscular atrophy (SMA) with AAV vector has been approved by FDA.
- Scientists are actively searching for AAVs that can cross the BBB. In C57BL mice, the newly identified AAV-PHP.eB is able to cross BBB.

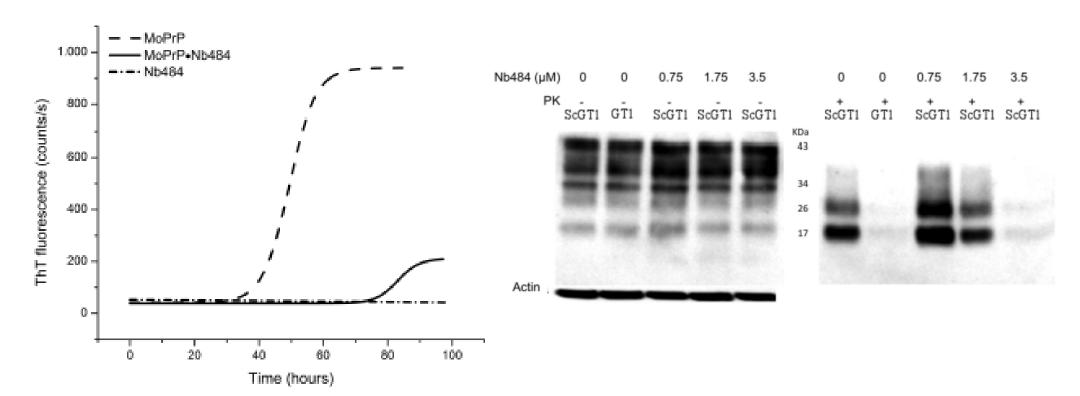


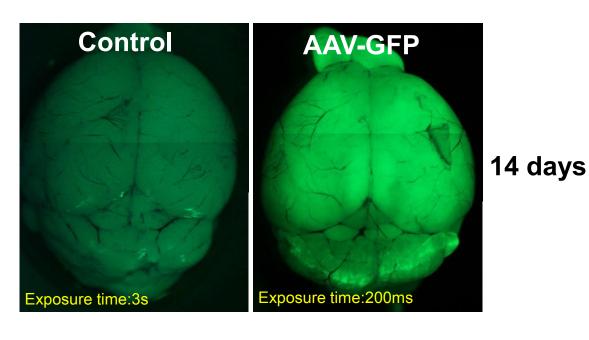


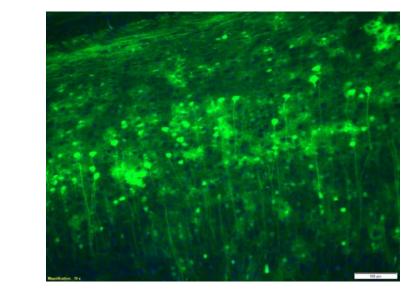
Probing the N-Terminal β -Sheet Conversion in the Crystal Structure of the Human Prion Protein Bound to a Nanobody

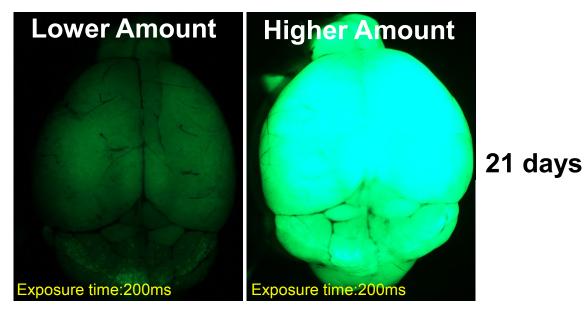

Romany N. N. Abskharon, $^{\dagger,\pm,\parallel,\#}$ Gabriele Giachin, Alexandre Wohlkonig, $^{\dagger,\pm,\#}$ Sameh H. Soror, Els Pardon, Giuseppe Legname, and Jan Steyaert, $^{\dagger,\pm,\parallel}$

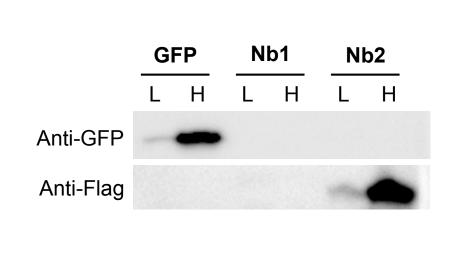
Pauline M. Rudd et al. PNAS 1999;96:23:13044-13049






Probing the N-Terminal β -Sheet Conversion in the Crystal Structure of the Human Prion Protein Bound to a Nanobody


Romany N. N. Abskharon, Gabriele Giachin, Alexandre Wohlkonig, Alexandre Wohlkonig, Sameh H. Soror, Sameh H.



AAV delivery to central nervous system

Summary

- We identified nanobodies that bind to not only PrP expressed in bacteria, but also the fully modified PrP expressed in mammalian cells.
- These anti-PrP nanobodies are able to inhibit prion replication in vitro, and do not show any neurotoxicity.
- The anti-PrP nanobodies have been packaged into AAV and successfully expressed in the central nervous system.
- The study of the potential therapeutic effect of expressing anti-PrP nanobodies by AAV in mice is underway.

Acknowledgements

- The Katie Pohl Dopirak Memorial Grant, contributed by The Pohl and Dopirak Families.
- The Cheryl Molloy Memorial Grant, contributed by Tim Molloy and Family.
- The Jeffrey A. Smith Memorial Grant, contributed by The Jeffrey and Mary Smith Family Foundation.
- The Tom Stivison Memorial Grant, contributed by Cookie Stivison.
- The CJD Foundation Grant, contributed by the Families of the CJD Foundation.

Acknowledgements

Van Andel Research Institute

Yue Ma Fei Wang

Xinhe Wang Kayla VanderStel

Katelyn Becker Romany Abskharon

Michelle Zhang Juxin Ruan

Alena Drayton

Kyle Ross

Vrije Universiteit Brussel

Jan Steyaert

Alexandre Wohlkonig

Els Pardon

Scuola Internazionale Superiore di Studi Avanzati (SISSA)

Giuseppe Legname

Gabriele Giachin