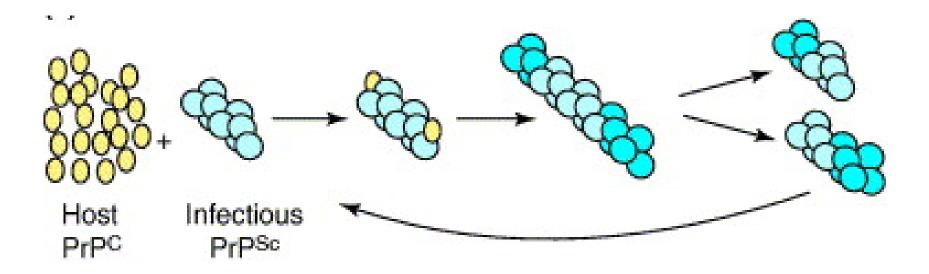
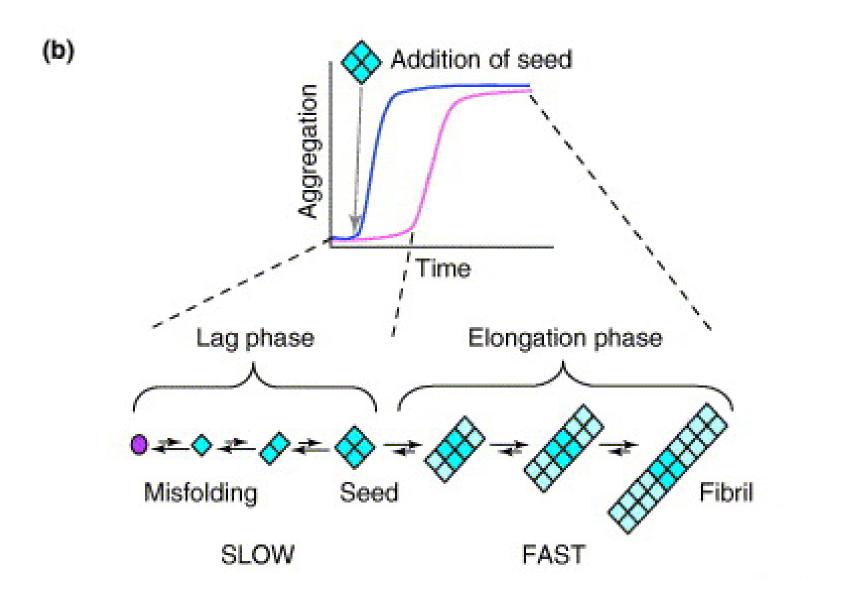
Prion Disease Overview

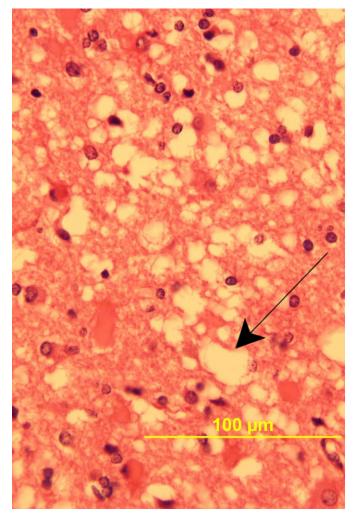
Brian Appleby, MD

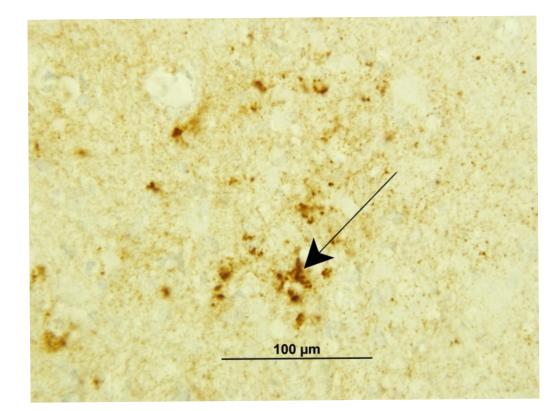

Objectives

- Provide an overview of the biology underlying prion disease
- Discuss the clinical presentation and work-up of prion disease
- Discuss the various forms of prion disease

What is a prion?

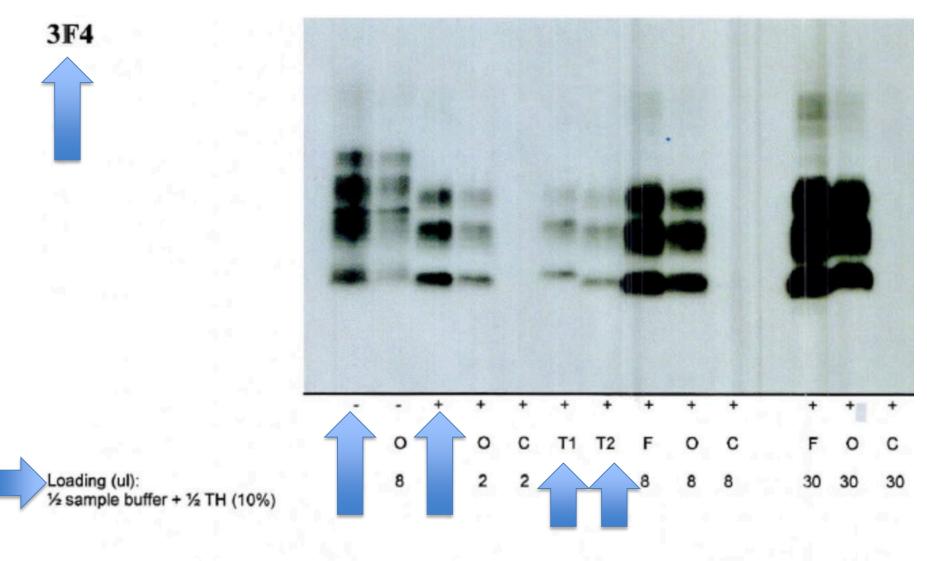

- **pro**teinaceous and **in**fectious
- -*ion* (infectious, e.g. virion)
- No nucleic acid
- Non-degradable by typical sterilization


PrP: prion protein PrP^C: normal prion protein (c=cellular) PrP^{Sc}: disease causing protein (Sc=scrapie)


Soto C, Trends Biochem Sci 2006

Soto C, Trends Biochem Sci 2006

Neuropathology



H & E Staining (spongiform changes)

Immunohistochemistry (abnormal prion protein)

Western blot

+: proteinase K treated

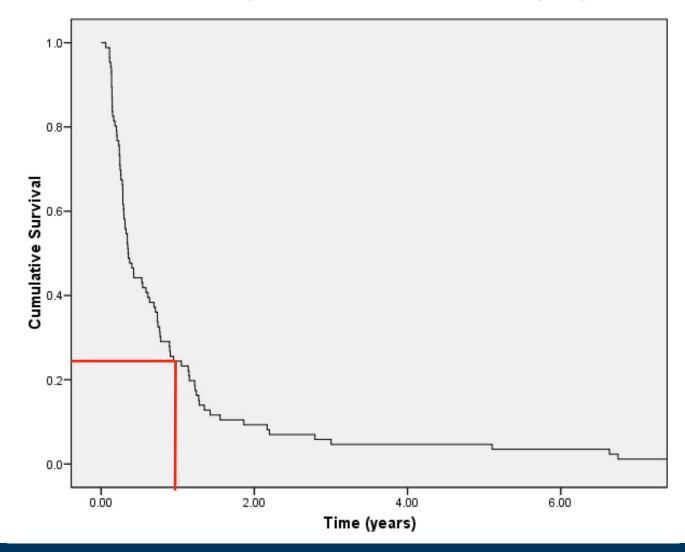
F: Frontal O: Occipital C: Cerebellum

Animals

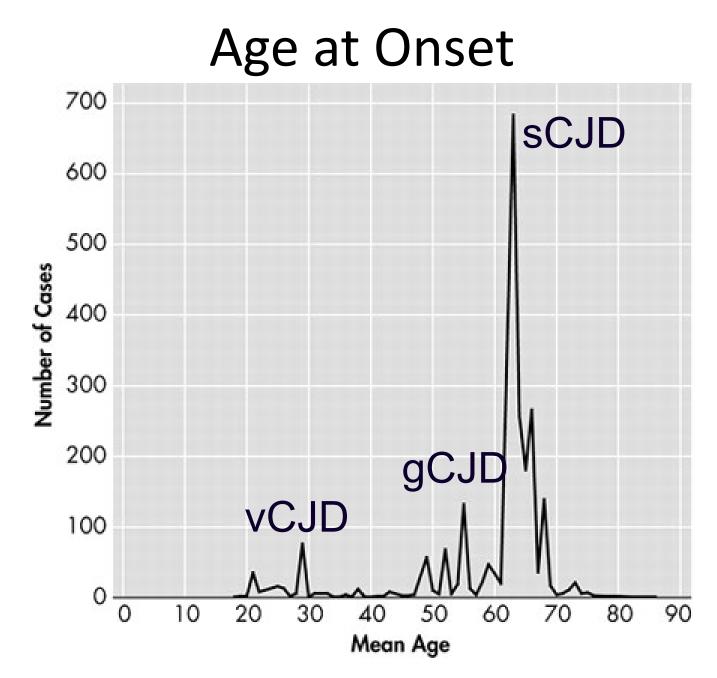
- Scrapie: sheep & goat
- Bovine spongiform encephalopathy (BSE): cow
- Chronic wasting disease (CWD): deer, elk, moose, caribou
- Camels: Camel prion disease

Human Etiologies



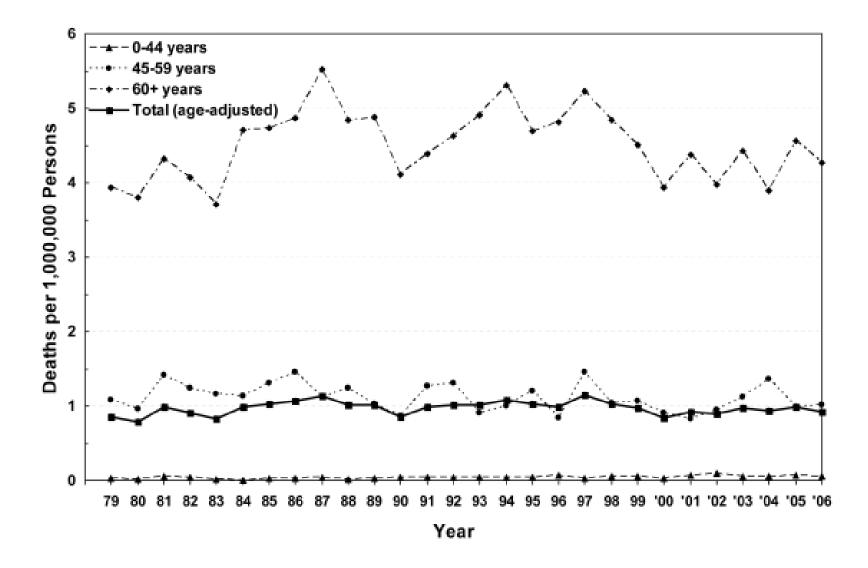

Genetic CJD Fatal familial insomnia Gerstmann-Sträussler-Scheinker

Kuru Iatrogenic CJD Variant CJD



Survival Time in Sporadic Creutzfeldt-Jakob Disease (n=90)

Adapted from: Appleby BS, Arch Neurol 2009



Adapted from: Appleby BS, J Neuropsychiatry Clin Neurosci 2007

Human Epidemiology

- 1-2 new cases per million individuals per year across the entire population (all ages) (incidence)
- 1/7,000 US deaths per year (lifetime risk)
- OH: 11 million people
 - 11-22 new cases/yr
 - ~2-4 cases living past one year
 - Would not be unusual to have 13-26 active cases in OH

Creutzfeldt-Jakob disease age-specific and age-adjusted death rates, United States, 1979-2006*

Deaths obtained from the multiple cause-of-death data for 1979-1998 are based on ICD-9 codes. Deaths beginning in 1999 are based on ICD-10 codes with available computerized literal death certificate data. Death information was also obtained from other surveillance mechanisms. Rates are adjusted to the US standard 2000 projected population.

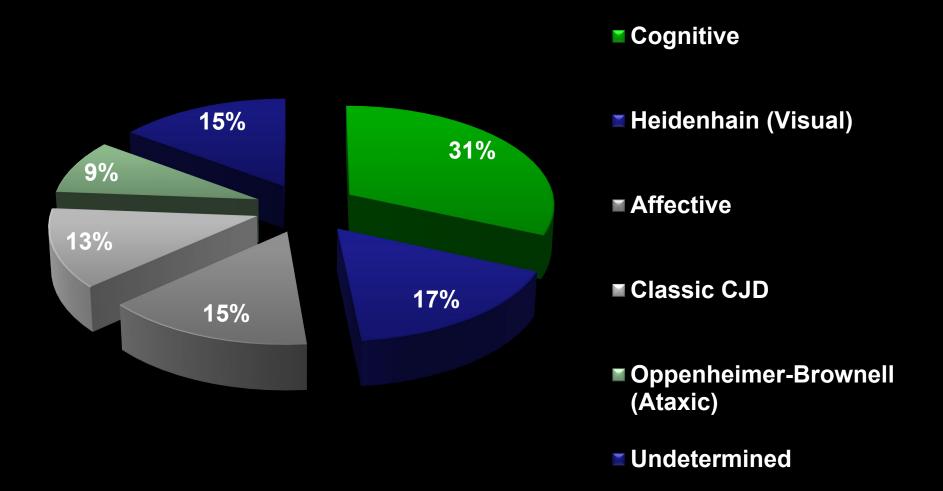
Holman RC. PLoS ONE 2010

Criteria for Probable sCJD

At least two clinical signs with dementia:

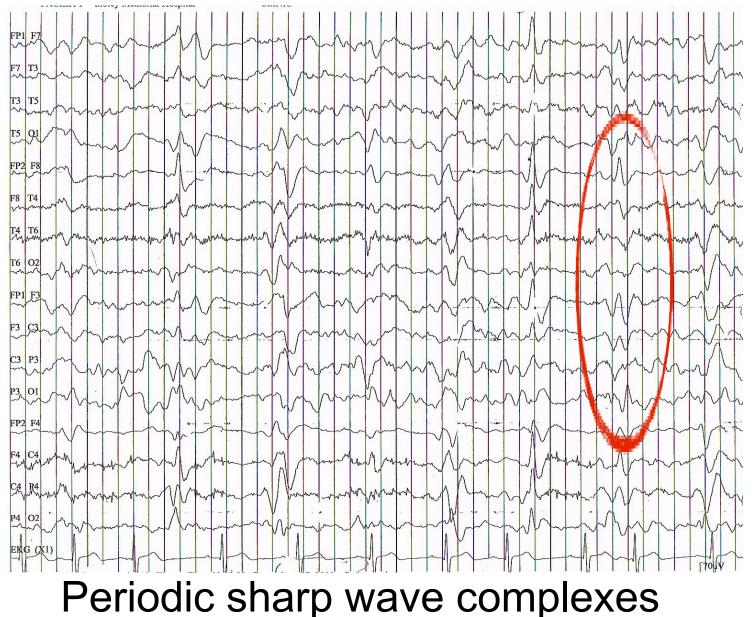
- 1. Myoclonus (e.g., twitches)
- 2. Cerebellar or visual symptoms (e.g., "drunken" walking, incoordination, depth misperception)
- 3. Pyramidal or extrapyramidal symptoms (e.g., weakness, tremors, Parkinson's disease like walking)
- 4. Akinetic mutism (lack of voluntary speech & movement)

At least one of the following:

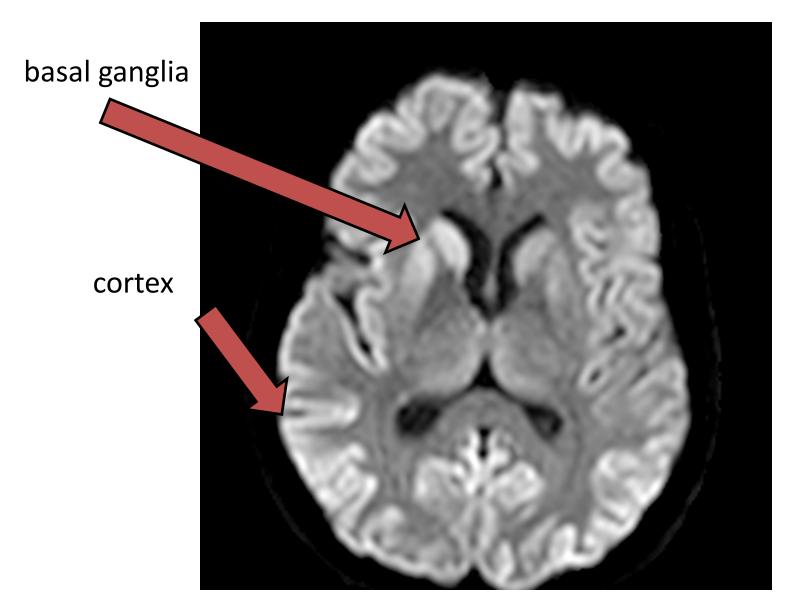

- Periodic sharp wave complexes on electroencephalogram (EEG) (looks at brain waves)
- 2. 14-3-3 in CSF and disease duration < 2 years
- Abnormal findings in basal ganglia (e.g. middle) or at least two cortical (e.g., outside) regions on specific sequences on brain MRI

New Diagnostic sCJD Criteria

- Neuropsychiatric disorder
- + Real-time quaking induced conversion (RT-QuIC)


https://www.cdc.gov/prions/cjd/diagnostic-criteria.html

sCJD Clinical Presentations



Adapted from Appleby BS et al., Arch Neurol 2009

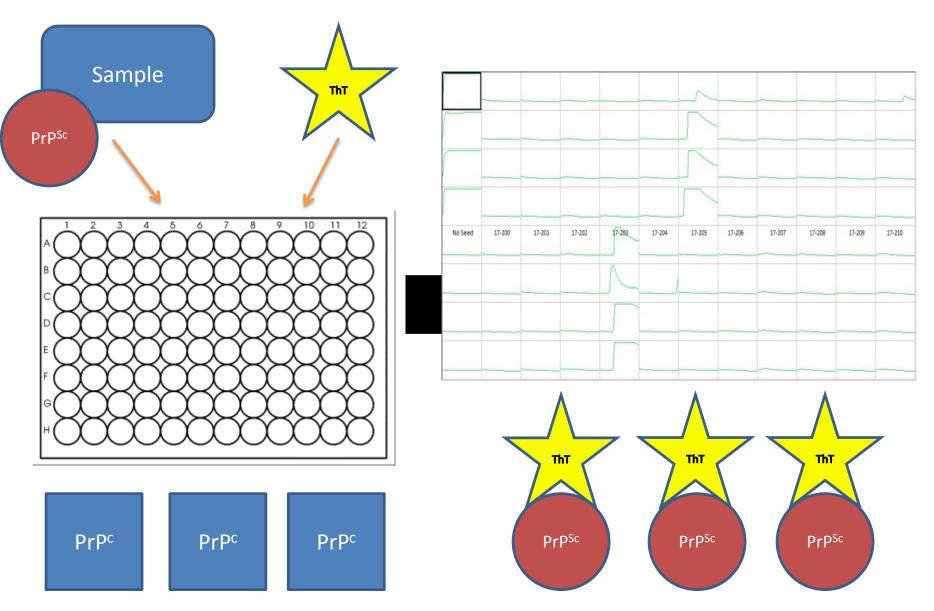
Electroencephalogram (EEG)

Brain MRI

Cerebrospinal Fluid Tests

Markers of brain cell damage:

- 1. 14-3-3: positive, negative, or ambiguous
- 2. Tau: result is a number (0-tens of thousands)


Disease specific test:

 RT-QuIC: detects abnormal prion protein (very specific)

Problem with 14-3-3/tau

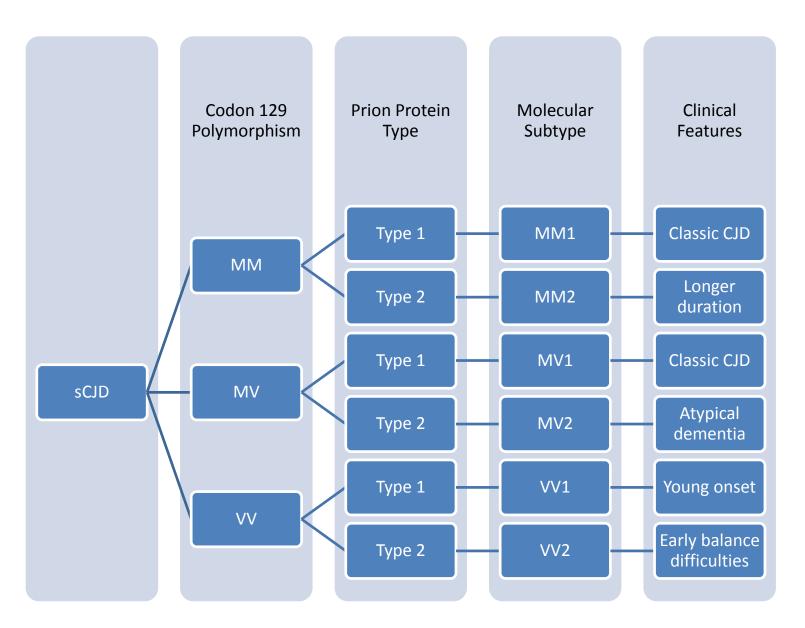
- Markers of brain cell injury
- Often seen in other conditions:
 - Stroke
 - Seizure
 - Head injury
 - Multiple sclerosis
 - Rapidly progressive Alzheimer's disease

Real-Time Quaking-Induced Conversion (RT-QuIC)

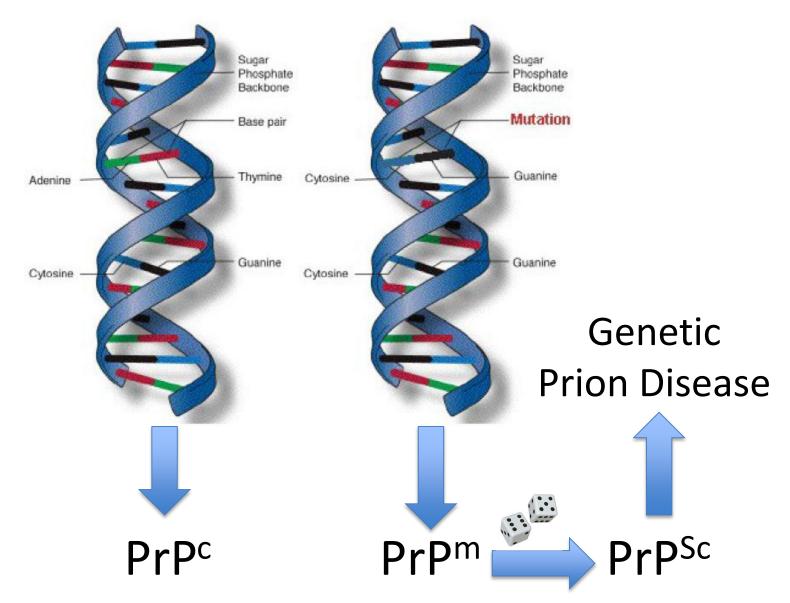
RT-QuIC: Highly Specific for sCJD

	14-3-3	Tau	RT-QuIC
Sensitivity	81%	95%	95%
Specificity	43%	71%	100%

Sensitivity: How good is the test at detecting a disease?


Specificity: How sure are you that it is the disease you are trying to detect?

Foutz A, Ann Neurol 2017


NPDPSC vs Mayo CSF 14-3-3 Testing

- 14-3-3 is done differently
- Mayo: must order tau separately
- RT-QuIC only available via NPDPSC
- Will automatically be contacted regarding interest in autopsy program if positive

sCJD Molecular Subtypes

Genetic Prion Diseases

Genetic Prion Disease

Table 1 Variations in the human prion protein gene coding region

Polymorphism Mutation		Mutation			
Silent	Influential	Point		Insertional	
P68P A117A G124G V161V N173N* H177H T188T* D202D Q212Q R228R S230S	M129V N171S? E219K? 24bp deletion?	P102L P105L A117V G131V I138M* G142S* Y145s Q160s D178N–129V D178N–129M V180I V180I V180I + M232R T183A H187R T188R	T188A T188K E196K F198S E200K D202N V203I R208H V210I E211Q Q212P Q217R M232R M232T P238S	24bp 48bp 96bp 120bp 144bp 168bp <u>192bp</u> 216bp	

(**Bold** indicates CJD phenotype, <u>underlined</u> indicates GSS, *italics* indicate FFI. Others are not categorised, as the published data are insufficient, or findings are unusual to the known disease subtypes. * Referred from: http://www.mad-cow.org/prion_point_mutations.html)

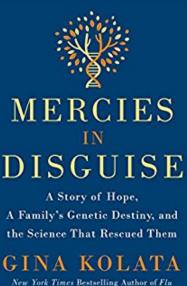
Kovács GG, J Neurol 2002

Penetrance

"The likelihood that you will become ill if you have the mutation"

Variant(s)	Ancestry	Comparison (allele frequencies)	Lifetim	ne risk (95%)	CI)			Positive family history in cases
	Cases (2.2%) vs. ExAC (0.38%)		←	×				
M232R	M232R Japanese	Cases (2.2%) vs. 23andMe (0.54%)	-	<u>+</u>				<mark> </mark> 3%
		Cases (7.2%) vs. ExAC (0.15%)			-			
V180I	Japanese	Cases (7.2%) vs. 23andMe (<0.094%*)			• -			<mark>- 2%</mark>
V210I	Italians	Cases (8.1%) vs. ExAC (0.021%)			-			<mark>⊢</mark> —∣ 12%
P102L A117V	122 14 14	Cases (4.9%) vs. ExAC (0%)					•	⊢––––––––––––––––––––––––––––––––––––
D178N E200K	Global	Cases (4.9%) vs. 23andMe (<0.00049%*)						→ 70% (GSS†) → 88% (FFI‡)
		.0'	2% .1	1% 19	% 10	0% 100	0%	
		popul	lation ine risk				plete	

Minikel EV, Sci Transl Med 2016


Clinical Features of Genetic Prion Disease

- Genetic CJD (multiple different mutations, e.g. E200K)
 - Resembles classic sporadic CJD
- Fatal Familial Insomnia (D178N-129M mutation)
 - Insomnia
 - Neuropsychiatric symptoms (anxiety, hallucinations)
 - Dementia typically late in the illness
- Gerstmann-Straussler-Scheinker Syndrome (several mutations)
 - Cerebellar signs and symptoms early
 - Parkinsonian symptoms early
 - Dementia usually later in the illness
 - Longer duration (e.g., years)

Preimplantation genetic diagnosis (PGD) for genetic prion disorder due to F198S mutation in PRNP gene

<u>Alice Uflacker</u>, MD,¹ <u>P. Murali Doraiswamy</u>, MBBS, FRCP,¹ <u>Svetlana Rechitsky</u>, PhD,² <u>Tricia See</u>, CGC,^{3,4} <u>Michael</u> <u>Geschwind</u>, MD,³ and <u>Ilan Tur-Kaspa</u>, MD^{2,5}

- Only implant embryos that do not have mutation
- Eliminate disease from the family
- Can do even if the parent does not wish to know their genetic status

Acquired Prion Disease

- Kuru
- latrogenic CJD (iCJD)
- Variant CJD (vCJD)

Kuru

latrogenic CJD

Mode of infection	Agent entry into brain	Mean incubation period (range)	Clinical presentation
Corneal transplant	Optic nerve	18 and 320 mo	Dementia/cerebellar
Stereotactic EEG	Intracerebral	16 and 20 mo	Dementia/cerebellar
Neurosurgery	Intracerebral	17 mo (12–28 mo)	Visual/dementia/cerebellar
Dura mater graft	Cerebral surface	11 y (16 mo–23 y)	Cerebellar (visual/dementia)
Growth hormone	Hematogenous (?)	15 y (4–36 y)*	Cerebellar
Gonadotrophin	Hematogenous (?)	13 y (12–16 y)	Cerebellar
Blood transfusion	Hematogenous (?)	6.5 and 8 y^{\dagger}	Psychiatric

Table 2 Clinical features of iatrogenic Creutzfeldt–Jakob disease according to the mode and route of infection

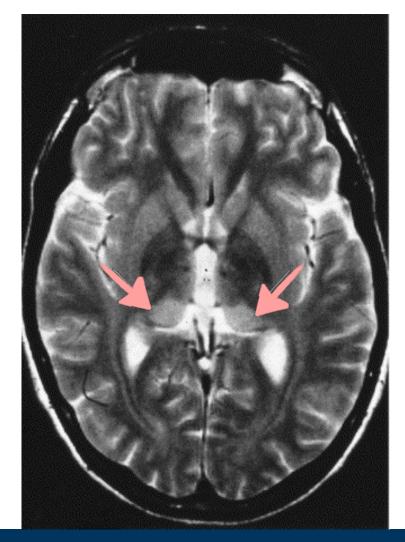
* Median and range were 12 (4 to 22) years in France; 17 (8 to 27) years in the United Kingdom; and 21 (10 to 28) years in the United States. The case with the longest incubation period (36 years) occurred in a New Zealand patient (hormone prepared in the United States).

[†] The incubation period of a third case is unknown, as the transmission was discovered only by detection of the pathognomonic misfolded protein in spleen and lymph node at autopsy in a patient with neither neurologic symptoms nor brain pathology, who died from an unrelated disease 5 years after having received contaminated blood (i.e., in a preclinical or subclinical stage of Creutzfeldt–Jakob disease).

Two criteria for acquired prion disease*:

1) Taken from central nervous system

2) Placed in central nervous system, injected into body, or ingested


*Only vCJD is known to have been transmitted by blood transfusions

Brown P, Neurology 2006

vCJD Characteristics

- Young age at onset (~20s)
- Longer duration (> 1 year)
- Psychiatric and sensory symptoms at presentation
- Often have negative 14-3-3, unrevealing EEG
- Different brain MRI findings

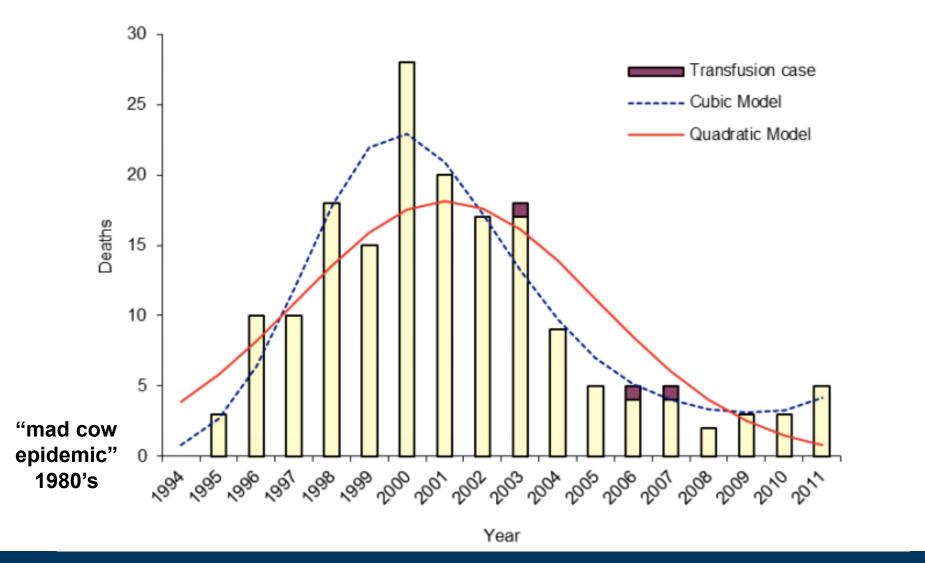
Pulvinar Sign

Zeidler M, Lancet 2000

VARIANT CJD CASES WORLDWIDE

COUNTRY	TOTAL NUMBER OF PRIMARY CASES (NUMBER ALIVE)	TOTAL NUMBER OF SECONDARY CASES: BLOOD TRANSFUSION (NUMBER ALIVE)	RESIDENCE IN UK > 6 MONTHS DURING PERIOD 1980-1996
UK	175 (0)	3 (0)	178 [§]
France	27 (0)	-	1
Republic of Ireland	4 (0)	-	2
Italy	3 (0)	-	0
USA	4† (0)	-	2
Canada	2 (0)	-	1
Saudi Arabia	1 (0)	-	0
Japan	1* (0)	-	0
Netherlands	3 (0)	-	0
Portugal	2 (0)	-	0
Spain	5 (0)	-	0
Taiwan	1 (0)	-	1

[†] The third US patient with vCJD was born and raised in Saudi Arabia and has lived permanently in the United States since late 2005. According to the US case-report, the patient was most likely infected as a child when living in Saudi Arabia. The completed investigation of the fourth US patient did not support the patient's having had extended travel to European countries, including the United Kingdom or travel to Saudi Arabia. It confirmed that the case was in a US citizen born outside the Americas and indicated that his infection occurred before he moved to the United States; the patient had resided in Kuwait, Russia and Lebanon (see <u>http://wwwnc.cdc.gov/eid/article/21/5/pdfs/14-2017.pdf</u>]

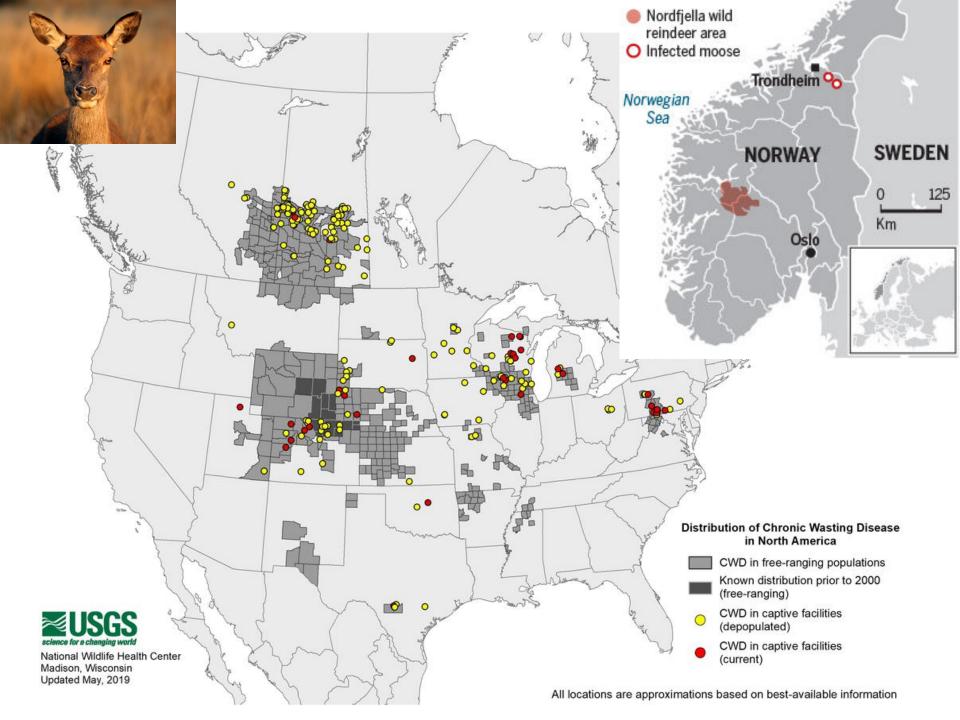

* The case from Japan had resided in the UK for 24 days in the period 1980-1996.

٤

Case 178 from the UK was heterozygous at codon129 of the PRNP gene http://www.cjd.ed.ac.uk/documents/worldfi

Total=231

Figure 6 vCJD deaths by year with fitted quadratic and cubic trend lines


SCHOOL OF MEDICINE

CASE WESTERN RESERVE

Creutzfeldt-Jakob Disease in the UK, 20th Annual Report, 2011

Asymptomatic vCJD Carriers

- Survey of UK appendices
- 16/32,441 were prion positive
- No difference by birth cohort
- All codon 129 polymorphisms represented
- Estimated infection prevalence of 1:2000

CWD Questions

- Transmissible to humans?
 - No known cases
 - CDC has various studies
 - NPDPSC collects data and looks for atypical cases
 - Some evidence that it can be transmitted to primates
- Effect on environment (e.g., contamination)
- How to stop the spread?
- Are other animals at risk?

Summary

- Prion diseases are caused by a misfolded protein and can be transmissible in certain circumstances
- There are 3 causes of prion disease: sporadic, genetic, and acquired
- Brain tissue allows us to definitely diagnosis prion disease and its type, but clinical tests are often useful in making a diagnosis in the right clinical setting

My Lab

National Prion Disease Pathology Surveillance Center

Thank you!